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Abstract. A large dataset of 446 structurally diverse organic compounds has been used to 
develop mathematical models that relate the structures within this heterogeneous group of 
compounds to their autoignition temperature (AIT) values. For the development of such 
Quantitative Structure Property (QSPR) models, the molecular structure of each 
compound was represented by calculated molecular descriptors which encode their 
topological, electronic and geometric features. Correlation Feature Selection method 
combined with Best First evaluator was used to select the most significant descriptors that 
were used as inputs for the development of several models. Different modeling 
methodologies such as kNN, SVM and MLR were then applied and the ability of the new 
models to predict AIT was assessed and compared to available experimental data. The 
accuracy and robustness of the produced models was based on validation principles as 
described by the Organisation for Economic Cooperation and Development (OECD). The 
kNN model was proven to be the most accurate model. Moreover the applicability domain 
of the models based on similarity measurements has been defined to indicate reliable 
predictions. For structures that fall within the domain of applicability, the proposed models 
can be used to predict AIT values based solely on their structure. 
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INTRODUCTION 

Reliable and accurate data of physicochemical properties are always required and even 
considered to be absolutely necessary before making a decision and investment to formulate, 
synthesize, scale-up, test and manufacture a new material for use in both military and civilian 
applications. The knowledge of autoignition temperature of toxic, volatile, explosive and 
radioactive compounds is essential in risk assessment calculation. The autoignition temperature 
(AIT) is defined as the lowest temperature at which a substance in air will ignite in the absence 
of a spark or flame [1] and as proposed in literature, the AIT of a compound is strongly 
depended upon its structure. Since AIT gives an indication of the temperature at which a 
material will spontaneously burst into flames when exposed to the atmosphere, it is an important 
fire performance parameter in process design and operational procedures. In many common 
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situations, such as the manufacture, handling, transport, and storage of combustible materials, 
the AIT has been widely used to characterize the hazard potential of chemicals.  

A valuable tool for developing quantitative relationships between structural characteristics of 
a compound and its properties is Quantitative Structure Property Relationships (QSPR). Multiple 
QSPRs can be developed for predicting a material’s physical/chemical properties and 
environmental effects. The molecular structures of the compounds are represented by 
calculated numerical descriptors which encode their topological, electronic, and geometric 
features. The availability of large numbers of theoretical descriptors that provide diverse sources 
of chemical information are useful to better understand relationships between molecular 
structure and experimental evidence, also taking advantage of more and more powerful 
methods, computational algorithms, and fast computers. Many different physicochemical 
properties have been studied in the context of QSPR [2-4]. Different approaches to predict AIT 
values of organic compounds have been previously reported in literature [5-8]. Among the 
various methods proposed, QSPR modeling has also been used in order to derive models that 
predict AIT values from the molecular structure and therefore have the potential to provide 
information on hazards of chemicals, while reducing time and cost required.  

Models reported in literature have been developed using different modeling workflows and 
although they have been shown to accurately predict AIT values they have several limitations 
such as the following: (i) the models are targeting a narrow structural space by i.e. focusing in a 
limited number of similar compounds and therefore cannot be used for generalization purposes, 
(ii) the models lack internal and external validation that would propose significant accuracy and 
robustness or they have not been properly validated following well established validation criteria, 
(iii) the models lack a well defined applicability domain that indicates which predictions could be 
considered reliable and (iv) the models rely on parameters which are not easily available for 
every compound or can not be accurately measured.   

In this work, a quantitative structure−property relationship study is performed to develop 
mathematical models that relate the structures of a large heterogeneous group of organic 
compounds to their autoignition temperature values. The molecular structures of the compounds 
are represented by calculated numerical descriptors which encode their topological, electronic, 
and geometric features. These descriptors can be easily calculated solely from the molecular 
structure. Selected descriptors are used to develop several models that predict AIT based on 
various modelling techniques, such as k Nearest Neighbor (kNN) Support Vector Machines 
(SVMs), and Multiple Linear Regression (MLR). The ability of the new models to predict AIT is 
assessed and compared to available experimental data. All models are internally and externally 
validated paying special attention to the principles of model validation for accepting QSAR 
models as described by the Organisation for Economic Cooperation and Development (OECD). 
Moreover the applicability domain of the models has been defined to indicate reliable 
predictions. 

 

MATERIALS AND METHODS 

Data Set 

The dataset that was used for this study initially includes a diverse set of 446 organic 
compounds and their corresponding experimental values for autoignition temperature (AIT) [8]. 
The dataset includes hydrocarbons, halogenated compounds, alcohols, ethers, esters, 
aldehydes, ketones, carboxylic acid, amines, amides, nitriles, nitro compounds and compounds 
with multiple functional groups. The observed AIT values for these compounds were found in 



PaperID: NCH-2010-D4, Nausivios Chora 2010, Copyright © 2006-2010: Hellenic Naval Academy 
 

 3 

the range of 170 to 680oC. A few representative organic compounds included in the dataset are 
shown in Figure 1. 

Each compound was represented by a 2D structure using MarvinSketch provided by 
ChemAxon [9]. For each compound in the dataset, different descriptors could be calculated to 
account for different structural characteristics. In this work almost 780 descriptors were 
calculated using Mold2 [10]. After removing useless descriptors, i.e. descriptors with no 
variation, by using the unsupervised attribute filter provided by Weka [11] in total 500 
physicochemical constants, topological and structural descriptors were finally considered as 
possible input candidates to the model. Before the calculation of the descriptors, the structures 
were fully optimized using PM6 method in MOPAC2007 suite which, as proposed in literature, 
offers a good balance between computational speed and accuracy [12]. 
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FIGURE 1.  Organic compounds included in the dataset 
 

Modeling Methodology 

 Variable Selection 

Before running the modeling methodology the most significant attributes among the 500 
available were preselected by using Correlation – based feature subset selection (CfsSubset) 
variable selection and BestFirst evaluator which are included in Weka [11]. CfsSubset algorithm 
evaluated the worth of a subset of attributes by considering the individual predictive ability of 
each feature along with the degree of redundancy between them. Subsets of features that were 
highly correlated with the class while having low inter-correlation were preferred. The attribute 
selection mode was set to 10 fold cross validation. 
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 Machine Learning Method 

For preprocessing, cleansing, attribute selection, modeling and validation of our data we have 
created a KNIME [13] workflow suitable to run step by step all the aforementioned tasks 
simultaneously for each of the described modeling methodologies. KNIME is a very popular 
modular data exploration platform that enables the user to visually create data flows (often 
referred to as pipelines), selectively execute some or all analysis steps, and later investigate the 
results through interactive views on data and models. KNIME is a very powerful tool for data 
analysis which also integrates all analysis modules of the well known Weka data mining.  

A great variety of machine learning methods have been applied in QSAR studies [14-16] and 
the best approach for a specific problem needs to be explored. In this work we have used 
KNIME platform in order to simultaneously run and compare three different modeling 
methodologies and explore which of the available methods (or combination) best suites our 
data.  

We have considered the following machine learning methods available in KNIME for 
performing regression to our available dataset: k Nearest Neighbor (kNN), Support Vector 
Machines (SVM) and Multiple Linear Regression (MLR). The kNN and SVM modeling 
methodologies used are briefly described below: 

k-Nearest neighbors (kNN) algorithm [17] is a method for classifying objects based on closest 
training examples in the feature space and belongs to instance-based (or lazy) learning. Based 
on the kNN algorithm an object is classified by a majority vote of its neighbors, with the object 
being assigned to the class most common amongst its k nearest neighbors (where k is a 
positive integer, typically small). If k = 1, then the object is simply assigned to the class of its 
nearest neighbor. In this work we have used automatic selection of the optimal k value based on 
the internal cross-validation procedure. Euclidean distance was used with all descriptors and 
contributions of neighbors are weighted by the inverse of distance.  

Support Vector Machines (SVM) was proposed in 1963 by Vapnik et al., [18] and was shown 
as an effective tool for solving classification and regression problems. For a given regression 
problem the goal of SVM is to find the optimal hyperplane for which the distance to all data 
points is minimum. A detailed presentation of the theory behind the SVM technique can be 
found in several books and tutorials [19]. For this work we have used Support Vector Machine 
regression (SVMreg) methodology using the RBF kernel with the complexity parameter c equal 
to 1000. The training data were normalized and as the learning algorithm RegSMOimproved 
was chosen [20]. 

 

Model Validation 

The internal performance, as represented by goodness-of-fit and robustness, and the 
predictivity of a model, as determined by external validation, needs to be evaluated. The 
produced models were validated using external validation and cross validation methods [21]. 
External validation was applied, by randomly splitting the dataset into training and validation set 
in a proportion of 70:30. The 134 compounds that constituted the test set were not involved by 
any means in the training procedure. The following statistical criteria were used to assess the 
robustness, reliability and predictive activity of the model: the coefficient of determination 
between experimental values and model predictions (R2), Mean Absolute Error (MAE) and Root 
Mean Square Error (RMS). These measurements are used in the context of statistical models 
whose main purpose is the prediction of future outcomes on the basis of other related 
information. Coefficient of determination accounts for the percentage of variation of the 
dependent value that is explained by the descriptors. Regarding cross validation, both 10-fold 
cross validation and Leave–One–Out (LOO) cross validation methods were applied. Cross-
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validation is a popular technique used to explore the reliability of statistical models. Based on 
this technique, a number of modified data sets are created by deleting in each case one or a 
small group (leave-some-out) of objects. For each data set, an input–output model is developed, 
based on the utilized modeling technique. The model is evaluated by measuring its accuracy in 
predicting the responses of the remaining data (the ones that have not been utilized in the 
development of the model). In particular, the leave-one-out (LOO) and the 10-fold (10fCV) 
cross-validation procedures were utilized in this study, which produce a number of models, by 
deleting one or several objects, respectively, from the training set. 

Applicability Domain 

The need to define an applicability domain expresses the fact that QSPRs are models which 
are inevitably associated with limitations in terms of the types of chemical structures, 
physicochemical properties and mechanisms of action for which the models can generate 
reliable predictions.  

In this work similarity measurements were used to define the domain of applicability of the 
models based on the Euclidean distances among all training compounds and the test 
compounds [22]. The distance of a test compound to its nearest neighbor in the training set was 
compared to the predefined applicability domain (APD) threshold. The prediction was 
considered unreliable when the distance was higher than APD. APD was calculated as follows: 

APD = <d> +Zσ 
Calculation of <d> and σ was perfomed as follows: First, the average of Euclidean distances 

between all pairs of training compounds was calculated. Next, the set of distances that were 
lower than the average was formulated. <d> and σ were finally calculated as the average and 
standard deviation of all distances included in this set. Z was an empirical cutoff value and for 
this work, it was chosen equal to 0.5. 

RESULTS AND DISCUSSION 

The original dataset of 446 diverse organic compounds was randomly partitioned into training 
and validation set consisting of 312 and 134 compounds respectively. The training set was used 
to develop the QSPR models as described below whereas the test set was not involved by any 
means in the model development. For each compound 777 descriptors were calculated using 
Mold2 software which account for the topological, geometric and structural characteristics of 
compounds. As some of the descriptors do not have any discrimination power (i.e. they have no 
variation) a filter was applied for their removal. In total 500 descriptors remained to be used as 
possible inputs during the QSPR model development.  

The CfsSubset variable selection with BestFirst evaluator method was then applied on the 
training data to select the most significant, among the 500 available descriptors. Nine 
descriptors were selected as the most important to describe the relationship between structural 
characteristics of compounds and AIT. The selected descriptors are mean atomic van der Waals 
Carbon-scale (D144), average valence vertex connectivity order-4 Index (D222), average 
valence vertex connectivity order-5 Index (D223), structure centric index (D252), Moran 
topological structure autocorrelation length-1 weighted by atomic Sanderson electronegativities 
(D495), Moran topological structure autocorrelation length-3 weighted by atomic Sanderson 
Electronegativities (D496), number of Csp2 (D606), number of group CH2RX (D719), number of 
group =CHR (D729) and number of group R~CR~R (D738). 

The chemical meaning of the descriptors used in the development of each model is briefly 
discussed below [23, 24]. The combination of these descriptors have several advantages such 
as unique representation of the compound and high discriminating power. 
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To account for steric effects in molecule interactions, the weighted information indices by 
volume have been selected by the algorithm (Descriptor D144). These molecular descriptors are 
calculated in the same way as the indices of neighborhood symmetry using the atomic van der 
Waals volumes to get the probabilities of the equivalence classes. In other words, the van der 
Waals volumes of the atoms belonging to each equivalent class are summed up to give a 
molecule subvolume then divided by the total molecule volume. The effective van der Waals 
volume of an atom is defined as the van der Waals volume of the atom minus half the sphere 
overlapping of the atom due to covalent bonding of the adjacent atoms in the molecule. 

Descriptors, D222 and D223 account for the topological characteristics of compounds and 
more specifically for the connectivity between atoms within the molecule. In general topological 
indices such as D222 and D223 are based on the two-dimensional representation of the 
molecule and give information about the atomic composition of a compound, the presence and 
character of chemical bonds and the connectivity between atoms. D222 is the average valence 
vertex connectivity order-4 Index and D223 is the average valence vertex connectivity order-5 
Index. 

Centric indices (D252) are molecular descriptors that quantify the degree of compactness of 
molecules based on the recognition of the graph center centric indices. These descriptors 
quantify the degree of compactness of molecules by distinguishing between molecular 
structures organized differently with respect to their centers. Based on the recognition of the 
graph center, these indices are mainly defined by the information theory concepts applied to a 
partition of the graph vertices made according to their positions relative to the center. 

Descriptors D495 and D497 encode information related to Sanderson Electronegativities 
combined with Moran topological index of spatial autocorrelation. Moran coefficient is related to 
atomic properties, the number of atoms and the topological distance between specific atoms. 
Electronegativity is a property of the state of the system; electrons tend to flow from a region of 
low electronegativity to a region of high electronegativity. With the formation of a molecule, 
electronegativities of the constituent atoms or fragments equalize, all becoming equal to the 
electronegativity of the final state of the molecule. 

Descriptors D606, D719, D729 and D738 are indicators that account for the presence or 
absence of a specific atom or structural group. More specifically D606 is the number of 
secondary carbon (sp2) that are included in the compound. Descriptors D719, D729 and D738 
are the number of the following groups respectively CH2RX, =CHR, R~CR~R which might be 
present in the compound. 

The aforementioned descriptors have different weights that influence the increase or 
decrease of AIT values among different compounds. Based on the previous discussion and the 
positive or negative influence of each descriptor, new derivatives with desired properties can be 
designed. 

We have used a KNIME workflow in order to compare different methodologies and explore 
which of the available methods best suites our data. As described above three different 
methodologies have been used, kNN, SVM and MLR. 

By applying on our training data, k Nearest Neighbors (kNN) methodology with automatic 
selection of the optimal k value based on the internal cross-validation procedure, a k value of 4 
was selected. Euclidean distance was used with all nine descriptors and contributions of 
neighbors weighted by the inverse of distance. 

A comparison between the three modeling methodologies has been carried out (Table 1). All 
methodologies were employed to describe the relation between AIT and the selected 
descriptors. The same descriptors and training set have been used for the all three 
methodologies. Validation of the models was performed using the techniques mentioned in the 
previous section. The corresponding statistics for the three methodologies are presented in 
Table 1, illustrating the accuracy, significance and robustness of the produced models. As it can 
be derived from the Table amongst the different models the kNN model is the one that 
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outperforms all other alternatives in external validation prediction. As can be seen from Table 1, 
kNN methodology results in a mean average error (MAE) as low as the experimental error of 
AIT determination, which is around ±30oC for both training and test sets. We can conclude that 
the selected descriptors selected by CfsSubset and BestFirst algorithm can encode the 
structural features of the compounds related to AIT. Based on the produced statistics SVM 
model is the second best model followed by MLR.  

  
TABLE 1. Statistical Results 
 kNN SVMreg MLR 

R2
train 0.9978 0.6854 0.6519 

MAEtrain 2.9304 43.5838 47.4394 
RMStrain 5.1559 58.8778 61.742 
R2

LOO 0.6170 0.6159 0.6354 
MAELOO 48.8984 50.407 48.6178 
RMSLOO 65.4826 65.2544 63.383 
R2

10fCV 0.6093 0.6197 0.6277 
MAE10fCV 50.9991 49.5706 48.8874 
RMS10fCV 65.8018 64.9972 63.9038 

R2
test 0.8653 0.7881 0.7487 

MAEtest 31.0896 39.9065 41.8626 
RMStest 38.9867 49.2699 53.1411 

 
Figures 2 and 3 present a plot of experimental versus predicted values of AIT for compounds 

in the test set for the best two models, kNN and SVM model respectively.   
 

 
 

 
FIGURE 2.  kNN model: Experimental vs Predicted AIT values for the Training Set. 
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FIGURE 3.  SVM model: Experimental vs Predicted AIT values for the Test Set. 

 
The applicability domain was defined for all compounds that constituted the training set for 

AIT models as described in the Materials and Methods section. The applicability domain limit 
value was equal to 7.6995 and all compounds in the test set had values in the range of 0-
4.0002. Since all validation compounds fell inside the domain of applicability, all model 
predictions for the external test set were considered reliable. 

The proposed method, due to the high predictive ability and the fact that it requires 
information related only to the 2D structure of a compound, could be a useful aid to the costly 
and time consuming experiments for determining the AIT. The method can also be used to 
screen existing databases or virtual chemical structures to identify organic compounds with 
desired properties. In this case, the applicability domain will serve as a valuable tool to filter out 
“dissimilar” chemical structures. 

 

CONCLUSIONS 

In this paper we have successfully built and compared several models for the prediction of 
AIT based on a large dataset of 446 diverse organic compounds. All models were fully validated 
following OECD model validation guidance. The most accurate and reliable model was proven 
to be the kNN model. The molecular descriptors used in QSAR encode information about the 
structure, branching, electronic effects, chains and rings of the modules and thus implicitly 
account for cooperative effects between functional groups. Applicability domain was defined to 
identify the reliable predictions. The developed models can predict AIT values for compounds 
that fall within the domain of applicability and guide the design of novel molecules by prioritizing 
compounds with desired characteristics.  
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