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Abstract. In this paper, we explore the dynamics of a qubit state prepared in a 
double-well potential generated by the coupling of the system with the 
environment through two independent field barriers. Thus, we adopt the path-
integral theory to reveal the system’s complex energy spectrum through the 
construction of its Green’s function. In particular, we focus on the alteration of 
the “Hadamard Time” defined in the current paper. We qualitatively study the 
aforementioned alteration as a function of various parameters, such as the 
magnitude of the field barriers, the relative size of the well related to the 
internal barrier, and the shape similarity factor. We analytically define these 
quantities inside the manuscript. We also discuss in detail the appearance of the 
exponential decay rate. Since our results come in analytic form, they permit 
their future numerical application in realistic physical and quantum computing 
systems.  
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INTRODUCTION 
 

    The qubit, which is the quantum version of the classical bit [1], corresponds to a 
class of quantum systems possessing a characteristic property that can admit two 
possible values. In general we focus our attention on this property and consider the 
rest as frozen or out of interest. Thus considering the spin of an electron, the two 
possible values are namely the spin up and spin down while considering the 
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polarization of a photon, the horizontal and vertical polarization, [2,3]. As far as the 
position of an atom or electron is concerned, the double well potential serves as a one 
dimensional qubit where the atom or electron can be found in the left or right well. 
Spin qubits can be realized by either solid-state or superconductor technology [4,5], 
and at the same time position qubits (for instance the presence or absence of an 
electron in a quantum dot) which are known as charge or electrostatic qubits, can also 
be implemented either in a semiconductor manner [6,7] or using a Cooper pair box  
[8,9] in superconductors. A combination of the above deals with the use of hybrid 
spin-charge superconducting qubits, e.g. transmons, [10]. The interested reader may 
find a review of the current semiconductor and super-conducting technologies in 
[11,12].   

   The one-dimensional double well potential (DWP), depicted by Figure 3 that 
follows, not only stands throughout the ages as a model for the study of some peculiar 
but still most basic quantum phenomena, such as internal tunneling and energy 
splitting, but at the same time is a widely used practical model for the study of a 
variety of systems and processes in Physical Sciences. Out of the plethora of such 
studies, we distinguish the Ammonia maser [13,14], the Bose Einstein condensates 
[15-17], structural phase transitions [18], matter-wave interferometry in atomic 
dimensions [19], realization of qubits, [20], and realization of beam splitters [21]. 

    Quantum computation strongly relies on the realization, manipulation and 
control of qubits. As far as the realization is concerned, a basic technique deals with 
the construction of a double - well potential in such a way that the energies of its first 
two eigenstates appear to have a large gap with the rest, [22,23]. For example holes in  
quantum wells have the attractive property of a light effective mass which is highly 
desirable for spin qubits since it provides large energy level spacing in quantum dots, 
[24].  In addition it is well known from the late 90s that we can use linear components 
of quantum optics technology, such as lossless symmetric beam splitters, for the 
implementation of universal quantum gates such as the Hadamard gate, and to further 
perform precisely the computation of quantum gates and algorithms, [25]. A Bose 
Einstein Condensate beam splitter uses condensates instead of single particles and can 
be realized with a DWP of tunable height, [21].  

     A single particle qubit implemented as a DWP, can be built up from two 
coupled semiconductor quantum dots, where the band offset of different materials in 
one direction results in an effective one dimensional DWP, [26-28]. Alternatively it 
can be built up through the use of superconductor devices based on the Josephson 
effect, where the effective DWP  results via a RF-SQUID circuit [29-31]. A third 
option comes from trapped ions in a DWP which are confined via  the use of strong 
magnetic and electric fields, [33-35]. However it is extremely difficult to confine a 
trapped ion in different topology than the one of a in-line arrangement providing a 
low scalability and in addition just as other quantum processors they demand 
extremely low temperatures. Despite the complexity of the above mentioned systems, 
their basic structure and dynamics can be explained through basic principles of the 
one dimentional DWP, [35-37].  

     Thus, during the recent years many different schemes both theoretical and 
experimental have been proposed for the implementation and manipulation of qubits 
through effective one dimensional DWP. Mentioning a few we distinguish the 
analysis of the phase evolution of the Cooper pairs wave function for obtaining a 
DWP with cusp barriers for current qubits, [38], the DWP Josephson junction 
between two d-wave superconductors, as an implementation of a phase or flux qubit, 
[39], the analysis for designing a  vortex qubit created in a DWP in a semiannular 
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Josephson junction, [40,41], buckling nanobars which are nano-electromechanical 
quantum coherent systems as to be forming a DWP for charge qubits, [42], quantum 
dots in semiconductor nanocolumns prepared by epitaxial growth and where the 
carrier confinement  in the direction of the DWP can be achieved by conformal 
overgrowth of a semiconductor barrier layer, [43], and many others.  

   A suitably engineered quantum well can stabilize the charge state of the qubit 
against photoionization [44] and when an electric field is imposed on the DWP the 
induced lack of inversion symmetry allows the possibility of different qubit 
manipulation methods such as electron spin resonance, electric dipole spin resonance 
and g-tensor modulation resonance, [45]. On the other hand the most exotic 
phenomena of quantum mechanics such as quantum entanglement can be produced 
through a DWP qubit and its interaction with a source of non classical light, [46]. In 
addition, single and two-qubit operations can be realised through a high degree of 
control over the tunnel coupling of the DWP, while spin-orbit coupling obviates the 
need for microscopic elements and enables rapid qubit control through fast rotations, 
[47].  

   As far as the dynamics of the qubit is concerned, decoherence was understood to 
play a key role at the very beginning of quantum computation, [48]. Coherence time 
refers to the length of time that a quantum superposition state can survive. The key is 
to have a quantum superposition live longer than it takes to perform an operation or 
experiment. Manipupation of the qubic destroys isolation and induces decoherence of 
its state. It is experimentally observed that spin-based qubits  maintain coherence for a 
longer time length than electrostatic qubits [49].  

   Hence, all the above motivated us for producing the current work.  In this paper 
we study the dynamics, meaning the time evolution, of a qubit state in a DWP, which 
is a potential that possesses two minima separated by an internal barrier, under the 
additional influence of a two channel (barrier) field, as this is depicted by Figure 2 
that follows. In a way, it continues previous works of ours on the DWP, [50,51]. Such 
a model adds to the normal dynamics of the DWP the possibility of irreversible 
dissipation to the free particle continuum. The work described in this paper, 
constitutes a particular implementation of the path integral method to the model 
potential which is depicted by Figure 2, where a barrier field is inserted in each side 
of the unperturbed potential of the qubit, in order to qualitatively describe not only the 
field-induced variation of energy splitting and/or time period of internal oscillation, 
but the appearance of exponential decay rates as well, describing the dissociation of 
the qubit. However we should have in mind, that when it comes to application, most 
of the formal and mathematical work uses arbitrary parameters. Therefore, the 
interesting information of such calculations is not in the absolute value of the 
numbers, since it is hard to see how experimental conditions and measurements can 
test exactly the model problem. In addition, the present treatment has allowed the 
derivation of analytic formulas for the energies, the energy shifts, and energy widths, 
due to tunneling. Such a potential has not been treated before analytically, making the 
problem rather challenging.  

   The present paper is organized as follows. In the first section we describe in short 
the path integral method to be applied, for the construction of the qubit’s Green’s 
function, introducing the various phase factors to be used. Next we actually apply the 
method and gradually construct the qubit’s Green’s function, by taking in account the 
various phase factors that the system’s topology acquires through successive 
propagation and reflection events. We also carry out the tedious algebra and calculate 
the qubit’s Green’s function in a compact fractional form.  In the third section we 



NAUSIVIOS CHORA, VOL. 8, 2022  

 

http://nausivios.hna.gr/ 

C-14 

briefly review the dynamics (time evolution) of the DWP and define the Hadamard 
Time. Next we bring out the significance of its energy spectrum, as far as the energy 
splitting and the Hadamard Time are concerned. In the fourth section we reveal the 
system’s complex energy spectrum, while in the next section we analyze the 
dynamics of the model studied, concerning the alteration of the Hadamard Time and 
the exponential decay rate, for various values of the parameters used. In this section 

we introduce quantity  ( , )sim  
 

 that measures the shape of the qubit’s internal 
barrier relative to the one of its well. In the final section we conclude, and light our 
most important results.    

 

  
 

THE CONSTRUCTION OF THE QUBIT’S GREEN’S 
FUNCTION VIA PATH INTEGRALS 

 
     As is well known, both the Schrodinger and Heisenberg picture in Quantum 

Mechanics, deal with the basic dynamical differential equations involving either the 
states or the operators, [52]. In deep contrast, Feyman’s formulation of path 
integration [53], offers an alternative geometric picture and targets directly towards 
the solution of the Schrodinger equation, which is constructed in the form of a 
propagator.  

   Feynman showed how a system’s propagator can be determined by the “sum over 
histories”, meaning quantity  

 
 ( ) / ( )iS x t

FK N e Dx t                                                                                    (1) 

 
where the above functional expresses the sum over the classical paths and S stands for 
the classical action. Thus, the square meter of the propagator, which is 

2

2 1 1( ,  ;  , )K x t x t , gives the probability of finding the particle at the time t2, assuming 

the starting and ending point to be x1   and  x2   respectively.  Its energy Fourier 
transform, called the fixed energy amplitude [54], is the system’s Green’s function 
K(E). Its construction reveals the energy spectrum of the system under study, since 
the Green’s function can be written as a sum of energy pole terms of the following 
form 
 

( )
Z

n

n n

c
K E

E                                                                                          (2) 

 
The Zn energy poles may be real or complex, depending on the dynamics of the 
system under study.   

   In their periodic orbit theory, Gutzwiller [56] and later Miller [57,58], showed 
the way Green’s function can be constructed for one dimensional propagation, via the 
calculation of all the possible changes in phase of the wave-function through the 
corresponding changes of the action, during the system’s propagation over the 
classical paths. Holstein [59] in his seminal work, put all these together, and nicely 
showed how the fixed energy amplitude, can be used to achieve analytic continuation 
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of the propagator to forbidden regions of motion, (potential barriers), where the 
particle  travells in imaginary times. His central result for the calculation of the 
transmission amplitude via an infinite set of paths that the particle follows, can be 
written in the compact form that follows 

 

 
1 2

( )
2

2
11

( )  
N j

ij
i r rj

m
K E s

k








    
  

  
                                                                            (3)   

                
In the above equation 

1 2r rk is a non local wave number of the particle  connecting the 

initial and the final point of propagation and defined by 
 

1 2 1 2( ) ( )r r k r k rk                                                                                                     (4) 

 
where   2( ) 2 ( ) /k y m E V y   ,with E standing for the energy and V(y) for the potential 

function. The index j corresponds to a particular path, while the index i corresponds to 
a certain event along the path. Therefore, the symbol 2

ijs   represents each i event 

factor that contributes to the jth path normalized to the maximum change in phase 
which is equal to 2π. Their total number is Ν(j) and depends on the path. These event 
factors are of two types. One type represents propagation and the other represents 
reflection from a turning point.  

The 2
ijs   propagation event phase factors describe propagation (from a to b) in an 

either allowed region (given by  ( )exp ( )[ ]
b

b
a

i b
i ek y dy    

 
, where the   superscript 

stands for the shape of the well), or in a forbidden region (from b to c) of motion 

(given by ( )exp ( )
c

b
b

bey dy  


     

 
 with     2( ) 2 ( ) / ( )y m V y E ik y    , where 

the   superscript stands for the shape of the barrier). The dimensionless phase 
quantities ( )b


 and ( )b


 will be called the “qubit well magnitude” (qwm) and the “ 

qubit barrier magnitude” (qbm)  respectively. A large qwm corresponds to a deep and 
broad potential well while a large qbm corresponds to a high and broad potential 
barrier. These quantities appear continuously in the text and figures that follow and 
play a significant role in the qubit’s dynamics since the first contributes to the 
oscillation of its orthogonal basis states and the second to the tunneling phenomenon.  
The 2

ijs  reflection event phase factors describe reflections from turning points, (–i for 

reflection from a turning point in an allowed region, + i/2 for reflection in a forbidden 
region , and –1 for reflection from an infinite barrier). 

    However, someone notes that the reflection factors (except of course for the case 
of an infinite barrier), do not take in account the relative size of the involved areas. 
For example if a particle is reflected back to a classically allowed region of motion, 
the reflection factor will always be equal to (-i), no matter how large is in magnitude 
the potential barrier on the other side of the turning point. Clearly, this is an issue that 
has to be solved and it actually does in the context of the present research, as will be 
seen later.  Both  ( )b


 and ( )b


 are dimensionless phase quantities. The above 

mentioned  rules are in total depicted by Figure 1 that follows and can also be found 
in standard textbooks of path integrals, or quantum tunneling as well, [54,60]. For the 
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present requirement of computing the overall transmission amplitude, the points r1 
and r2 are in the classically allowed region of motion of the left well of Figure 2. 

 
 
                            

 4 2
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FIGURE 1.  The rules for the construction of the path integral amplitudes through the 2
ijs 

 

event factors. Here we depict a path example  involving 9 event phase factors. The dash line 
stands for propagation in a classically allowed region, while the dot line for propagation in a 
classically inaccessible region. These regions are characterised so by the relative value of the 
energy. The square reflection factor (-1) stands for reflection from an infinite barrier, the 
circle reflection factor (-i) for reflection back to a classically allowed region and the elliptic 
reflection factor (+i/2) for reflection back to a classically inaccessible region.  

 
 
 

     As far as the model is considered to have only one degree of freedom, 
corresponding to the relative position of the atom or electron, it can be treated as a 
one dimensional physical system. Thus we can apply the path integral method for the 
construction of the Green’s function. In addition we should sketch the perturbed one 
dimensional potential as in Figure 2 that follows:                                
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FIGURE 2. The potential of a perturbed double well. There are five regions of motion: the 
classically accessible regions L and R corresponding to states 0 and 1 , and the classically 

inaccessible regions ,  ,    
  

 of the internal and the field barriers respectively. The blue lines 
f1 and f2 stand for the electrostatic field imposed on the right and left well respectively while E 
stands for the particle’s energy. The slope of f1 and f2 is proportional to the corresponding 
field strength. There are four turning points of motion (a,b,c,d) and points r1 and r2 lie 
between a and b of the left well. 

 
 

Figure 2 describes the induced topology of the potential as this is determined by the 
specific value of the energy. There are four turning points, meaning a, b, c, and d.  In 
this way we have five regions of motion, two classically allowed (L and R wells) and 
three classically forbidden (barriers ,  ,    

  
). In order to construct the overall 

transition amplitude for propagation between points r1 and r2 of region L, we divide  
the problem into simpler ones.       
For this we write K(E) as a sum of transition amplitudes involving specific regions of 
motion each time, of the form:   

 

    
1 2

2
 ; 

, , , , , ,
,

1 , , ,
( )

r r

L L R L R
L Lm

K E
k

  


          
  

  
  


                              (5)    

                                         

where 
, ,L R




for example denotes the amplitude for propagation involving the 
classically allowed regions L and R as well as the internal barrier, in all possible 
ways. Table 1 that follows explains the symbols that we will use in the rest of the 
manuscript, concerning the various amplitudes.  
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SYMBOL DESCRIPTION 

r


 Contribution of a single propagation in a 
classically allowed region as a function of the 

ending point r for starting point a 

b


 Contribution of a single propagation in a 
classically forbidden region as a function of 

the starting point b 

 1 2( ; )qA r r


 Amplitude for a single propagation from 
left to right inside region q between points r1 

and r2  

1 2 ( ; )qA r r  Amplitude for infinite repetitions of the 
propagation between r1 and r2 in all possible 

ways, while staying at region q 

   2

1

r

rp q  Overall amplitude for exhausting 
combination of the regions p and q 

propagating between r1 and r2  

   ,p q  Total contribution to the Green’s function 
through the exclusive combination of regions 

p and q 
 

TABLE 1. Basic symbols and their definition, in the current manuscript.  
 
 
In Appendix A we separately develop each amplitude of eq.(4) providing the basic 

steps. In the lines that follow we give an example by calculating the contribution of 

the L well. Transition Amplitude L  involves propagation inside the classically 
allowed region of the left potential well where the state 0  lives. It is constructed by 

fundamental amplitudes, for example  ( ; )LA r a


 that connects points r and a in a single 

straight path moving from right to left, (the arrow denotes direction), and by 
amplitudes ( ; )LA r a , that connect r and a with infinite repetitions (including 

reflections) in all possible ways. In this way we can write: 
 

 
 

1 2 1 2 2

1 2 2

( ; ) ( ; )( ) ( ; )( ) ( ; )+ ( ; )( ) ( ; )  

    + ( ; )( ) ( ; )( ) ( ; ) ( ; )( ) ( ; ) 

L L LL L L

L L L L L

L A r r A r a i A a a i A a r A a b i A b r

A r b i A b b i A b r A b a i A a r

     

   

   

    (6) 

 
Table 2 that follows contains the calculation of the above mentioned fundamental 
amplitudes:    
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    Fundamental amplitudes of area L         Function of event phase factors 

                        1 2( ; )
L

A r r


                            
2 1
/r r 

 
 

                        1( ; )
L

A r a


                               
1r




 

                        1( ; )
L

A r b


                            
1

/b r 
 

 

                        2( ; )
L

A a r


                               
2r




 

                        2( ; )
L

A b r


                            
2

/b r 
 

 

                        ( ; )
L

A a a                          1

2 Re b b 
 

 

                        ( ; )
L

A a b                            1

2 Re b


 

 
TABLE 2. Calculation of the amplitudes involved in the propagation inside region L.  

 
 

Giving a second example, the ( ; )LA a a  amplitude comes from the infinite repetition 

of the (a;a) propagation, including the reflection factors, which is 

    
2

1 1
( ; ) 1 ( ) ( ) ...

1 2 ReL b b
b b b

A a a i i 
  

      


 
                                         (7)  

It is also clear that 

                                
1

( ; ) ( ; )
2 ReL b L

b

A a b A a a


 


                                            (8) 

Putting all these together we get for the L  amplitude the following expression 
 

                1

2 1 2 1

2 1 21

2
2

2

1
/

1
rL b

r r b r r
b r r rr

ii
    

   


          

    
                                   (9)                  

               
Introducing / 4 1/ 2

b bi 
 

 we finally get for the  L  amplitude 

 

                         1 1 2

2

/ 4 / 4 / 4

/ 4

Im   2 Im    Im    
2

  Re
r r rL

r b b

i
  



  
  

   

  
                                           (10) 

 
Equation A.15 of Appendix A gives Green’s function for the total amplitude 
contribution, as 

 1 2

2
 ; 

1
( )

+2 1 ( ; ) ( ; ) Re1r r

m
K E

L Rk r a A a a b b 

 
      

    
                             (11) 

where the amplitude +L R 
 

 is defined by equation A.12 of Appendix A and 
given as 



NAUSIVIOS CHORA, VOL. 8, 2022  

 

http://nausivios.hna.gr/ 

C-20 

 
   

1

2

1 2

/ 4

/ 4

/ 4 / 4

1/ 22 3

2 4
2 22

2

Im   + 2
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4

4 Re
4 Re

r

r

r r

b
b d b b
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   (12) 

 
and the field barriers 


 and 


acquire phase factors to form the following barrier 

magnitudes ( )( )exp
e

d
d

d
y dy e  


     


and ( )

0
( )exp

a
a

ay dy e  


     


 

respectively, and where of course 
2

2
( ; )

2 1 / 4
a

a

i
A a a


 





 . 

 
              

SHORT REVIEW OF THE TIME EVOLUTION OF A 
QUANTUM STATE IN A DOUBLE WELL POTENTIAL 

 
   In the present chapter we briefly review the dynamics concerning the time 

evolution of a quantum state in a double well structure, as this can be found in any 
standard textbook of quantum mechanics and quantum tunneling [14,61]. For this, we 
assume to have the two initially separated lowest, degenerate eigenstates of the two 
independent unperturbed wells, namely 0 and 1  with energy Eo, that do not overlap 
with each other, as depicted by Figure 3 that follows. These states will interact through 
the finite potential barrier that separates the two wells to construct the eigenfunctions 
of the DWP. Since the potential is an even function, its Hamiltonian commutes with 
the parity operator. Thus we can construct an orthonormal basis of symmetric and 
antisymmetric states, as follows 

                                   1
0 1

2
S      and   1

0 1
2

                              (13) 

 
In fact we can mathematically describe the finite potential barrier as a perturbation 
matrix of the form U   , [62], where of course  stands for the Pauli matrice: 

                                          
0 1

1 0


 
  
 

                                                                 (14) 

Hence the total Hamiltonian becomes equal to o

o

E
H

E




 
  
 

. Diagonalization of the 

Hamiltonian gives two new eigenvalues for the symmetric and antisymmetric state, 
which are respectively: S oE E   and oE E    , whose energy distance is equal 
to Δ=2δ. Thus, the degeneration of the two initial states is removed, and an energy 
splitting appears of the corresponding energy levels.   

Let us assume now that at t=0 the system is prepared in the state 0 of the left well, 
which can be written as a superposition of states of the DWP: 
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 1
( 0) 0

2
t S A     . The time evolution of the state will then be 

    / /1
( )

2
o oit E it Et e S e A        . In terms of the initial eigenfunctions of the two 

separate wells, we can write 
 

                              /( ) cos( / ) 0   + sin( / ) 1oitEt e t i t                                (15) 

 
We particularly focus on the “Hadamard Time”, defined as the time needed for the 
initial state of the qubit ( 0 or 1 ) to come in an equally weighted superposition of the 

two complementary orthogonal states, 0  and 1 . In the context of the present 
research activity this time is defined as the Hadamard Time, since the action of the 

Hadamard gate on 0  is actually  1
0 0   + 1

2
  . Thus, the time needed for the 

initial state 0  to come in an equally weighted superposition of itself and its 

complementary state 1 is equal to 

                                         
4Hd

h
T 


                                                                       (16) 

 
Hadamard Time comes as a function of the energy difference of the two lower states of 
the DWP. Thus, in order to explore the system’s dynamics under the action of the two 
field barriers, we must first analyze its energy spectrum. The diffusion of the initial 
state to the continuum set of states through the field barriers, turns the spectrum into 
complex. Hence, the real part of the spectrum determines the alteration of the 
Hadamard Time while the imaginary part determines the state’s decay rate to the 
continuum, meaning decoherence.                 

 
           

10

E
o

-  δ

0
y

V ( y )

E
o

+ δ

 

FIGURE 3. The doublet splitting in a DWP. The two initially degenerate states 0  and 

1  with energy  Eo  of the two separate unperturbed wells,  interact through the internal 

potential barrier 


and form the symmetric (S)  and antisymmetric states (A) of the full 
potential, with energies Eo – δ and Eo + δ respectively.  
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THE ENERGY SPECTRUM OF THE FIELD PERTURBED 

DOUBLE WELL 
 
      
   As we have already seen, the step by step construction of the total Green’s 

function, reveals gradually additional fractional pole terms, coming as the extra 
contribution of each new region of motion. In turn, these poles correspond to the 
energies of the system due to the qubit interaction with the field barriers. 

    Thus, for each fractional contribution of the total Green’s function, we need to 
expand the denominator around the eigenvalues En of the unperturbed well. In this 
way, we calculate the energy shift that takes place, coming from both type of barriers, 
namely the internal qubit and the field diffusion barriers. In Appendix B we 
analytically calculate the energy poles that arise through the above described method. 
In the lines that follow we give an example of such calculation, concerning the poles 
of the unperturbed quantum well meaning region L. 
Region L contributes with the pole term: 
 

                              1

, ,ReL
n b n b nPole  

 
                                            (17) 

 
The poles of the fractional term arise naturally from  the condition Re 0b 


, which 

can be equivalently written as 
 

                           ( ) / 2
b

a

k y dy n                                                                     (18) 

 
Assuming a parabolic type of potential well, as depicted by Figure 2, meaning a 

function of the form 2( ) ( )oV y y y   , where 
2

2

2m 


 with Τ being the period of 

classical oscillations and y  corresponds to the bottom of the well, we can actually 

calculate the integral in (18) and find the energy poles as 
 

1

2nE n    
 

                                     (19) 

 
which are the exact eigenvalues of the harmonic potential. Giving another example 
we can assume a rectangular potential well of infinite walls, which is approximately 
true as long as we can assure that the internal barrier is much higher than the lower 
eigenstate of the well. Then we would have instead of (10) the following:  
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and consequently 
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which of course are the exact eigenvalues of a particle in a box.  Thus, the pole term 
of (17) reveals the eigenvalues of the isolated unperturbed potential well.  
According to Appendix B   the energy eigenalues for the rest region amplitudes go as 
following: 
 

a) Regions L and 


 contribute with the perturbed eigenvalues  
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where the subscript n denotes calculation on the eigenvalue En and where the symbol 

nEd  denotes derivation with respect to the eigenvalue En.    
 

b) Regions L, 


 and R contribute with the perturbed eigenvalues   
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c) Regions , , ,L R  

contribute with the perturbed eigenvalues  
 
                                                                                                                                                                                                     
 

 
 
 
 
 
 
 
 
 
                                                                                                                                    

(24)  
 

           
 

         

2

,2 2 4
2, , , , ,

4

, , ,

2
2 2 1

, , , ,

, , ,

( )
2 ( ) 4 2 ( ) 2 ( ) ( ) 2

( ) 4 2 ( ) 2 ( ) ( )

n

n n n n

n n n n

E

d nE E E E

b n b n b n b n b n

d n b n b n

E E E E

b n b n b n b n

L R
n nZ E

d b
d b d b d b d b

d b d b d b d b

 
        

  

       

  

            

  

 

         
   

       
  

 

     

     

2
2

,

2
4

, , ,

2 1
3 , , ,

, 2 2

, ,

2
2 2

, , ,

( )
2

1
4 ( ) ( ) ( )

2 4

( ) 4 2 ( ) 2

n

n n n

n n n

E

d n

d n b n b n

E E Eb n d n b n
b n

d n b n

E E E

b n b n b n

d b

d b d b d b

i

d b d b d

 

  

  
   

 

     



         
        

  

 
 

    
  

     
                

     
 

2
2

,1
2,

4

, , ,

( )
( ) ( ) 2

n

n

E

d nE

b n

d n b n b n

d b
b d b

 
 

  


         

  
  



NAUSIVIOS CHORA, VOL. 8, 2022  

 

http://nausivios.hna.gr/ 

C-24 

 
d) finally regions , , ,L R  

and 


 contribute with the perturbed eigenvalues  
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FIELD INDUCED  DYNAMICS OF A QUBIT STATE 

 
 
The time evolution of a qubit state in a double well structure, as this is induced by 

the presence of two independent field barriers depicted by Figure 2, concerns the 
alteration of the Hadamard Time, as well as the appearance of the exponential decay 
of the initial state into the continuum.  As we have already seen the spectrum turns to 

be complex taking the following form for the lowest state: 
2o OE E i  

  . As far as 

the real part is concerned, the result is the splitting of the Eο which is the lowest 
energy of the unperturbed wells, into two new states, with energies equal to  
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and then the Hadamard Time is given according to (16) as  
 

 /
4

Hd f a s

h
T

E E  



                                                                                            (27) 

     

     

2 2 2

2, , ,

, , ,

2 1 2

2 2 1, , ,

, , , 2 2

, ,, , , ,

2 ( ) 4 ( ) 2 ( )
4 4 2

2 2 ( ) ( ) 2 ( )
4

n n n

n n n

E E Ea n a n a n

b n b n b n

E E Ea n b n d n

b n b n b n

d n b nL R
n nZ E

d b d a d b

d b d b d b

  
     

  
     

 




  

             
     

 
      

  

       


       
     

     

     

2

,

2
2 2

2 , ,
, ,

1 2
2 1 , ,

, , 2

,

1
( ) ( )

2 2

( ) 4 2 ( ) ( )
4 2

2 ( ) ( ) 2 ( )

n n

n n n

n n n

E Ea n

E E Ea n a n
b n b n

E E E b n d n
b n b n

d n

d b d a

d b d b d a

d b d b d b


 

 
    

 
    

 




 
 
 
 

                
          
   




  

     

     
     

     

2
2

,

2

,

2 ( ) 2 ( ) ( )
( ) 2 ( ) ( ) ,

2 ( ) 2 ( )

1
( ) ( )

2 2

2 2 ( ) ( ) 2 ( )
4

n n

n n n

n n n n n n

n n

E Ea n

b n

E E E a n

d b d a

e e
e e d b e d b d b

e e

i

     
     

   


 


  

  
 

 

 
 
  
 
           

      

           



  

  
 

                

   

     

   

2

2 2 2
( ) ( )2, , ,

,

2 2
2 , ,

, ,

1
( ) ( )

2 2

( ) 4 2 ( ) ( )
4 4 2

( ) 4 2 ( )
4 2

n n

n n n n n

n n n

E E

E E Ea n a n a n
b n

E E Ea n a n
b n b n

d b d a

e d b e d b d a

d b d b d

   

 

  
   

 
   

 

       
   

 
                      

 
     
 

 

     

      

         

2

2
1 2 2

2 1 , , ,

, , 2 2

, ,

( )

1
2 ( ) ( ) 2 ( ) ( ) ( )

2 2
n n n n nE E E E Eb n d n a n

b n b n

d n b n

a

d b d b d b d b d a



  
      

 




     
    
 
                   



       
 



PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2022, Hellenic Naval Academy 

C-25 

 
where the subscript f  generally denotes the presence of a field barrier. 
In the absence of the field barriers the WKB approximation is obtained as [24,26] 
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,
/ 2 b

Hd WKBT





                                                                                    (28) 

 
where   is  the frequency of the classical periodic motion between turning points a 
and b corresponding to energy OE . The above result in (26) is obtained using the linear 
connection formulae. In the lines that follow we calculate the Hadamard Time  
separately for the  cases of  i) the unperturbed DWP, ii) the double well plus field 
barrier f1 and iii) the double well plus both field barriers + f1 and +f2 depicted by 
Figure 2. 

  
i) The case of the Unperturbed Double Well Potential: 

 

According to (23) the real parts of the doublet splitting, read 
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which of course goes far beyond the WKB expression. In fact, as can clearly be seen, 
eq. (30) reduces to (28) by keeping only the dominant terms (omitting terms like 

2 ( )oe    or smaller), and taking the barrier to be energy independent, meaning taking 

 ( ) 0Ed b 


, for a small energy area around Eo where the splitting takes place. 
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Thus we are motivated to further explore the energy dependence of the Hadamard 
Time. For this, we introduced in (30) quantity 

 
                                   ( ) / ( ) ( , )E Ed b d b sim    

   
                  (31) 

 
 
defined as the “shape similarity factor” between the barrier and the well, given as the 
ratio of the change in barrier magnitude to the change in well magnitude, as energy 
increases, some kind of ( )b


 derivative with respect to ( )b


. It is easily understood 

that the above quantity is negative since ( )b


 increases with the increment of the 

energy while ( )b


 decreases. The above are depicted by Figure 4 that follows. 

 
( , )

blue area
sim

green area

 
 

  
 

δΕ

δΕ

E

E+δΕ

E+δΕ

positive change in well magnitude

negative change in barrier magnitude

E

( , )sim  
 

case of a large in absolute value

case of a small in absolute value ( , )sim  
 

 
 

FIGURE 4. The variation of the shape similarity factor ( , )sim  
 

for two different 
cases of the potential barrier shape, relative to the one of the potential well. Note that the blue 
colour  denotes a negative change in the barrier magnitude as energy increases (shorter 
barrier) while the green colour a positive change in the well magnitude (deeper well).      

                   

In Figure 5 that follows we depict Hadamard Time as a function of the similarity 
factor for two different values of the qubit barrier, employing (30).  
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FIGURE 5. The variation of the Hadamard Time, (normalised to the WKB expression), as 

a function of the similarity factor ( , )sim  
 

 which relates the change of the field magnitude 
to the change of the well magnitude with energy increament, for two different values of the  
qubit barrier magnitude. For each case the Hadamard Time becomes minimum for a certain 

value of the similarity factor ( , )sim  
 

.   
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ii) Field barrier f1 active and field barrier f2 inactive 

According to (B-9) of Appendix B the real parts of the energy splitting, read    
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For the present purpose we currently disregard the energy dependence of the field 
barrier and write the real parts of the energy splitting as follows  
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Thus the Hadamard Time is given as: 
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where we have introduced the dimensionless quantity  
 

                                      ln /b dm  
                                                                      (35) 

 
as a measure of the difference in magnitude between the qubit and the field barrier f1. 
 

In Figure 6 that follows, we depict the variation of the ratio 1
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δm. It is clearly seen that as m  increases, the normalised Hadamard Time tends to 
unity, since then the field barrier becomes almost impenetrable and the Hadamard 
Time coincides with the one from the WKB approximation. On the contrary when the 
difference in magnitude between the qubit and the field barrier becomes negligible, 
Hadamard Time increases a lot.                            
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FIGURE 6. The  normalised Hadamard Time as a function of the difference in magnitude 

between the field and the qubit barrier. Hadamard Time tends to the WKB expression as the 
difference in magnitude increases and reaches a value twice the WKB one, for a difference in 
magnitude of the two barriers equal to 0.596.   

 

iii) Both field barriers f1 and f2 active.  

According to (B-12) the real parts of the energy splitting, read   
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        (38) 

 
In Table 3 that follows we include the values of various parameters that were 
employed in (38), as these were taken from our previous results.    

 

          Parameter                                       Value 
Qubit barrier strength 

φ(λ) (Figure 5) 
                                0.20  /   0.35                                

Difference in strength 

 ln /b dm  
      

for 200% of the WKB 
value of the Hadamard 
Time (Figure 6)      

                              0.596  /   0.693 

( , )sim  
 

: similarity 
factor for minimum value 
of the normalized 
Hadamard Time in  

        (Figure 5)       

                               1.39  /  1.69 

δ field barrier 
magnitude                 

                                      0.35 

 
 

TABLE 3.  The values of the parameters used in (38) for producing Figure 7 

 
Thus we produce Figure 7 that follows, where the variation of the normalised 

Hadamard Time as a function of the similarity factor ( , )sim  
 

  is depicted.  
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FIGURE 7. The variation of the normalised Hadamard Time as a function of the similarity 

factor ( , )sim  
 

which relates the change of the δ field barrier magnitude  to the change of 
the well magnitude with energy increament, for two different values of the qubit barrier 
magnitude. 

   
As far as the imaginary part is concerned, we should point out that this contributes to 
the exponential decay rate of the initial state. This can be seen by taking the Fourier 
transform of the Breit-Wigner or Lorentzian decay amplitude 
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                                                                       (39) 

and extending the spectrum to the full real axis −∞ < E < ∞ instead of being bounded 
from below 0 ≤ E < ∞ (“Fermi’s approximation”). The time evolution of the decaying 
state is then given by  
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Thus the survival  probability of the initial state is given as  
 

                   
/
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and this is called exponential decay. The decoherence of a quantum superposition 
state due to its interaction with the environment leads to an exponential decay law, 
[65,66]. Thus,  /Γο is a meter of the qubit’s decoherence time, meaning the time 
interval that the coherent superposition state survives. However if we do not 
necessarily extend the spectrum we will also find non exponential contributions for 
both small and large times. As far as the region of large times is concerned the non 
exponential contribution dominates the system’s evolution and takes the following 
form, [64], 
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In Figure 8 that follows we depict exponential decay rates , , ,L R
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which are twice the imaginary parts of  (B-9) and (B-12) respectively, as a function of 
the similarity factor ( , )sim  

 
, for the parameter values contained in Table 5. In 

addition we extract the value of 18.2 for the similarity factor ( , )sim  
 

, taken from 
Figure 7, which makes the corresponding Hadamard Time a minimum.  
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FIGURE 8. Comparison of the exponential decay rate for barrier field f1 only active and 

both barrier fields f1 and f2 active, as a function of the similarity factor ( , )sim  
 

, for three 
different cases as far as the relative magnitude of the field barriers is concerned: a)   f1< f2     
b) f1= f2 , c) f1>f2 . Note that the two rates come in different orders of magnitude. 

 
 
 

 
CONCLUDING REMARKS 

 
   In this paper, we studied the dynamics of a positional-based qubit structure as 

this is induced and controlled by the presence of two independent electrostatic fields. 
Our attention focused on the Hadamard Time, defined in the present paper as the time 
needed for the initial state to come in an equally weighted coherent superposition of 
the two orthogonal qubit states 0  and 1 , through the particle’s probabilistic 
appearance in both quantum wells. First, we analytically solved the model providing 
analytical relations for the system’s Green function and energy eigenvalues. Second, 
we gave analytical expressions for the intrinsic qubit’s time needed for oscillation 
between its orthogonal states and more than this of the time required for decoherence 
to appear through exponential decay. 

   In quantum computation, knowledge of the Hadamard Time is significant since it 
corresponds to the knowledge of the time needed for quantum coherent superposition 
to appear. The latter makes a substantial difference to quantum computing compared 
to its classical counterpart and makes quantum calculations much faster and the 
quantum computational system itself much more capable, [1]. Thus, in order to carry 
out quantum computations we should, at first, adjust the clock frequency of the 
computational system to the “frequency” f =1/THd of series of revivals of the 
superposition state. One can produce entangled states through such suitably prepared 
superposition states, [67]. Thus, frequency adjustment is required for quantum 
cryptography as well. In addition, our computing system gets less complicated since 
now no Hadamard gate is needed. At the same time, decoherence is unavoidable due 
to the qubit’s interaction with the environment. Decoherence destroys quantum 
superposition and forces the system to decay. The exponential decay rates that we 
analytically calculated in the current paper provide a decoherence time scale for the 
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duration of the computational calculations, maintaining their effectivity and accuracy. 
Decoherence time should be much longer than the period of revivals of the 
superposition state, [48].  In addition, the analytic study of the above phenomena 
through path integral theory provides more insight into the physics of the system. 

   In particular equation (30) gives the Hadamard Time in the case of the 
unperturbed or ideally isolated qubit. Clearly our result goes far beyond the WKB 
expression. But most importantly introduces quantity ( , )sim  

 
, defined as the 

similarity factor that relates the shape of the well to the one of the barrier as explained 
in Figure 4. As far as our knowledge goes this quantity has never before been 
introduced in the international bibliography. It is some kind of correction to the phase 
event reflection factors that contribute to the path integral calculation, (see the 
discussion at the end of the first section). In Figure 5 that follows eq. (30), we have 
depicted the dependence of the normalized (to the WKB expression) Hadamard Time 
on the similarity factor ( , )sim  

 
, for two different values of the qubit barrier 

magnitude. The Hadamard Time receives a minimum value. Both the minimum and 
the minimum position are increasing functions of the qubit barrier magnitude. Thus 
the DWP can be suitably engineered for Hadamard Time to receive its minimum 
value. The latter is very important since then small variations in the qubit’s potential 
will not alter Hadamard Time and consequently will not change the time scale of 
computation ensuring stability. Hadamard Time tends to a constant value when the 
well and the barrier are not shape related, ( , ) 0sim   

 
, but increases unlimited as 

( , )sim  
 

 increases, since then the qubit barrier becomes almost impenetrable.  
     For the case of the field barrier f1 alone, which permits the interaction of the 

qubit state with the continuum, eq. (33) describes the dependence of the  Hadamard 
Time on the difference in magnitude of the qubit and the field barrier, with the later  
expressed through quantity δm defined in (34). In Figure 6 we depict the above 
mentioned dependence for a qubit barrier magnitude equal to 0.2.  It is clearly seen 
that the Hadamard Time tends to the WKB expression as the difference in magnitude 
increases, since then the field barrier becomes impenetrable. On the other hand as the 
magnitude of the field barrier is lowered approaching the one of the qubit barrier, 
Hadamard Time increases, since then tunnelling is equally preferable by both 
mechanisms: internal oscillation and external diffusion to the continuum. Giving an  
example, Hadamard Time becomes twice the WKB expression for a difference in 
barrier magnitude nearly equal to 0.6. The field barrier magnitude is directly 
dependent on the field strength imposed on the qubit. Hence a suitably engineered 
DWP and a suitable applied electrostatic field f1, including its starting point and slope, 
uniquely determine the computational time scale.  

   When both field barriers are active, we are interested not only for the change in 
Hadamard Time but for the change of the exponential decay rate as well, compared to 
the case of the field f1 alone. Thus, in Figure 7 we depict the dependence of the 
Hadamard Time with the factor ( , )sim  

 
which relates the change of the δ field 

barrier magnitude  to the change of the well magnitude with energy increament, for 
two different values of the qubit barrier magnitude. The Hadamard Time becomes 
minimum for a certain value of the similarity function. Both the minimum value and 
the minimum position are increasing functions of the qubit barrier magnitude. Quite 
impressively, the minimum region corresponds to much larger values of the similarity 
factor compared to the case of the perfectly isolated DWP. Actually, their difference 
is equal to one order of magnitude. In addition, minimum Hadamard Time becomes 
much smaller, enabling fast but still stable quantum calculations. Interestingly 
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enough, the curve corresponding to the larger qubit barrier, is positioned under the 
smaller qubit barrier curve, after a characteristic value of the similarity factor.  

  As far as the exponential decay rate is concerned, we compare the case where 
both field barriers, f1 and f2, are present, with the one where only the field barrier f1 is 
active. In Figure 8, we have sketched the decay rate as a function of the similarity 
factor ( , )sim  

 
, for the previously mentioned field presences, examining separately 

three different values of the f2 magnitude: greater, equal and less than the f1 magnitude 
where the latter is assumed to remain constant. In each case the two rates come in 
different orders of magnitude and their difference is an increasing function of the f2 
barrier magnitude. Hence, the qubit state decays much faster due to the presence of a 
double field barrier. However, for large values of the similarity factor, the two rates 
become nearly equal, since then the dominant mechanism is the internal oscillation 
and not decoherence. Finally, let us assume that f1 stands for the system intera-ction 
with its environment while f2 electrostatically controls the qubit. Interestingly enough, 
the case of nearly equal barriers, as is shown in figure 8c, does not speed up the 
system’s decay compared to the situation where control is absent. In other words, we 
can control the qubit without accelerating its decoherence.   

 
 
 

APPENDIX A: 
Analytic calculation of the propagation amplitudes beyond ΥL. 
 
 

i) Transition Amplitude ,L 

  

 

This includes propagation inside the classically allowed region of state 0  and the 

classically forbidden internal barrier 


. This will affect the eigenvalues of state  0  
which will be naturally perturbed.  We use the following symbolism: 

 
1

,

2( ; )L b

r LL A b r  
  , in order to indicate the fact that we must first alternate  

region L with the one of the internal barrier, in all possible (infinite) ways between 
points r1 and b, and then propagate in all possible ways from point b to r2, while 
staying at region L. So, we must first come to point b which is common for the two 
regions and this results to

1( ; )LA r b . Then we interchange the two regions in all possible 
ways, starting and ending at turning point b. We finally propagate inside region L, 
between b and r2. According to the above we have: 
 

  1,

1 2( ; ) ( ; ) 1 ( ; ) ( ; ) ( ; )L

L L LA r b A b b A b b A b b A b r


   


                                     (A-1) 

 
Repeating the procedure of the previous paragraph, by substituting the phase event 

factors and doing the tedious algebra we find: 

                   1 2

/ 4 / 4

,

2

2

Im Im 1 1
2

Re
Re

4

r rL

b bb b
b

b

      
   





 
      
 
  


 

   


                   (A-2) 
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ii)  Transition Amplitude , ,L R


  
 
In this case state 0  not only interacts with the internal barrier but with state 1  as 

well. It is obvious that we must first come to turning point c, by interchanging in all 
possible ways the regions of  L, 


, R , and then interchange the couples (L,


) and (R,




) in all possible ways. Finally we can propagate to point r2 through the couple (L,


) 
or by staying entirely at region L. Putting all these together we get   

 

       2

1

1
, ,

21 ( ; )rL R c b c b

r c b c b LL q L R L A b r


              
                 

                                                                                                                                 (A-3) 
 

Table A1 that follows contains the above coupled regions propagation amplitudes as 
these are calculated in terms of fundamental amplitudes:  

 
   Amplitudes for  

the regions  L, 


, R  
Function of Fundamental Amplitudes 

         
1

c

rL 
                                                       

           1

1( ; ) ( ; ) 1 ( ; ) ( ; )L LA r b A b c A b b A b b


    

          c

bL 
                                 

           1
( ; ) ( ; ) 1 ( ; ) ( ; )L LA b b A b c A b b A b b



    

          2r

bL 
                          

  1

2( ; ) ( ; ) 1 ( ; ) ( ; ) ( ; )L L LA b b A b b A b b A b b A b r


    

          b

cR 
                                 

            1
( ; ) ( ; ) 1 ( ; ) ( ; )R RA c c A c b A c c A c c



    

 
TABLE A1. Calculation of the coupled regions ({L, 


}, {R, 


}) path integral amplitudes in 

terms of fundamental amplitudes. 
 

Repeating the procedure of the previous paragraph, by substituting the phase event 
factors and completing the tedious algebra, we find: 

 
 

             

 

 1 2

2 1

2

/ 4 / 4 2 1

2

2

2

, ,

1

2 Re
Re

4
2

Im Im 2 Re Im2
4

1
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4
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m

i
     

   



     

 

 







 
       
  
  
        
 
 
   



   



     

 

 


        (A-4) 

 
where the twofold symbols   that appear in the first fractional term, mean that we 
must actually sum two fractions, one for each sign. 
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iii) Transition Amplitude , , ,L R 

 
 

 

In this case state 0  not only interacts with state 1  through the internal barrier but 

with the field barrier 


 as well. This will force the system to decay. It is obvious that 
we must first combine the three regions L,


,R, by propagating from r1 to turning 

point d, and then combine regions 


,R,


, by propagating from d to b, and then 
alternate the couple (L,


) with (R,


) in all possible ways. Finally we can propagate 

to point r2 through the couple (L,


) or by staying entirely at region L. Putting all 
these together we get:   

 
 

      
      

      
 

1

1

1

1

1

1

, , , ( ; ) 1 1

                ( ; ) 1 1

1 ( ) ( ; ) ( ; ) 1 1
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c c
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1

2
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1 1 1 ( ; )

d c
c d

c c b c b
b c c b b L

R R R
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    (A-5) 

 
 
 
 

In Table A2 that follows we have calculated the coupled regions propagation 
amplitudes of this category, in terms of fundamental amplitudes.  

 
 
   Amplitudes of the    

regions  L,


, R  
            Function of Fundamental Amplitudes 

            c
cR 
                                                                    

            1
( ; ) ( ; ) 1 ( ; ) ( ; )R RA c c A c c A c c A c c



    

            b
bL 
                                 

          1( ; ) ( ; )[1 ( ; ) ( ; )]L LA b b A b b A b b A b b 
    

            d
c R

                             

            1
( ; ) ( ; ) 1 ( ; ) ( ; )R RA c d A c c A c c A c c



    

            c
c R

                                  

          1( ; ) ( ; )[1 ( ; ) ( ; )]R RA c c A c c A c c A c c 
    

            c
d R

                                  

          1( ; ) ( ; )[1 ( ; ) ( ; )]R RA d d A c d A d d A c c 
    

 
 

TABLE A2. Calculation of the coupled regions ({R, 


}, {L, 


}, {


,L}) path 
integral  amplitudes in terms of fundamental amplitudes.  
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The field barrier 


 acquires a phase factor and forms the following barrier magnitude 

( )( )exp
e

d
d

d
y dy e  


     


. Putting the above together and completing the tedious 

algebra, we finally get: 
 

             

 
 

1 2

1

2

1

/ 4 / 4 2

2

, , ,

1

2 Im Re

2 Re Im
2 Re

Im   Im   4
2

1

4 Re

b b b

b

b b b

b
r rL R b

b

b b b
b

i
 

  


  


  


  






 

                            
 
 
  
  

 

  


  
  



  


        (A-6) 

 
where quantity ρ is defined as  

 

      
   

1/ 22
3

2 4

2 2
2

4 Re
4

4 Re

b d b b

b b
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                                              (A-7) 

 
 
Again the symbol   that appears in eq. (18), means that we must actually sum two 
fractions, one for each sign. 

  
iv) Transition Amplitude , , , ,L R  

  
 

 

State 1 has already interacted with the total region on its right side, before reaching 

point a in order to interact with the second field barrier 


. A second channel of decay 
appears now. Thus we need to modify all the previously calculated transition 
amplitudes in such a way that propagation ends at turning point a instead of r2. Thus 
we use the symbol +

1( ; )L R r a 
 

to describe the sum of the previously calculated 

amplitudes for r2 = a. Modifying in this way the amplitudes we get: 
 

1 1 11
( ; ) ( ; )( ) ( ; ) ( ; )( ) ( ; )L L L L L

L
r a A r a A r a i A a a A r b i A b a     

  
                         (A-8) 

 

  1

11
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                       (A-9) 
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Obviously  
  

          
,

1 1 1 1

+ , , , , ,
1( ; )

LL R L L R L R
r a r a r a r ar a

    
           

    
                                      (A-12) 

 
 
The combination of the above with the field barrier 


, according to our 

aforementioned directions, gives the following: 
   

 
 2, , , ,
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where a single propagation inside field barrier 


 acquires a phase factor that forms 

the following barrier magnitude ( )

0
( )exp

a
a

ay dy e  


     


 and where of course    

2

2
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2 1 / 4
a

a

i
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Putting all these together we get the total transition amplitude for propagation 
between points r1 and a in the following form  
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        (A-14) 

 
 
It is interesting to notice that the pole condition: +

11 ( ; ) ( ; ) 0L R r a A a a 
  

 
 , 

transforms the total amplitude in its much simpler form 
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                        +
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2 1 ( ; ) ( ; ) Re
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                              (A-15) 

 

 
 
 
 

APPENDIX B: 
 

Analytic calculation of  the energy poles of each propagation amplitude beyond  
that of region L. 

 

 
Regions L and 


 contribute with the extra pole term: 
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                                                             (B-1) 

 
It is obvious however, that the complex denominator of the above fraction cannot be 
in any way equal to zero. Thus, we expand the denominator around the eigenvalues of 
the isolated unperturbed well. Doing so we find  
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            (B-2) 

 
Thus the perturbed eigenvalues become complex and equal to  
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where the subscript n denotes calculation on the eigenvalue En and where the symbol 

nEd  denotes derivation with respect to the eigenvalue En. 
   
 
i)  Regions L, 


 and R contribute with two extra  pole terms (one for each 

sign):  
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The two fold signs that appear in the above formula translate to the doublet splitting 
that was previously described. Hence, we develop the denominator of the above 
fraction around the eigenvalues En of the unperturbed well, to get 

 
 
 

 
                                                                                                                              

(B-5) 
 
 
The perturbed eigenvalues become then complex and equal to 
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ii)  Regions , , ,L R  

contribute with two extra  pole terms (one for each 
sign), coming through the fraction:  
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For once more, we develop the denominator around the eigenvalues En of the 
unperturbed well to get 
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Thus the perturbed eigenvalues become complex and equal to 
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iii) Regions , , ,L R 

 
and 


 contribute with two extra  pole terms, (one for 

each sign), arising through the following condition as this is induced by eq. 
(23):  
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We develop the above quantity around the eigenvalues En of the unperturbed wells 
and impose the: 
 

 

 

     

     

2 2
2 , ,

, ,

2 2
2 , 2 ,

, ,

2
,

, 2
,

                                       2
4 4

( ) 4 2 ( ) ( )
4 2

2 ( ) 2 ( ) 4 ( )

n n n

n n n

a n a n
b n b n

E E Ea n a n
b n b n

E E E d n
n b n

d n

i

d b i d b d a

E E d b i d b i d b

 
 

 
    


   



 
     

 

 
      
 

   


 
 



     

   
 

   

2
,

2
,

0

1
( ) ( )

2 2
n n

b n

E E a ni d b d a




 

 
 
 
       

  
 

       




 

             (B-11) 

 
Thus, once more the perturbed eigenvalues become complex and equal to 
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