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Abstract. Low Probability of Intercept (LPI)  waveforms have been used so far in 

monostatic radar signaling for pulse compression that results in drastic improvement of 

radar resolution or granularity. Multistatic radar becomes increasingly important due to its 

alleged ability to detect stealth aircraft. However  opportunistic exploitation of  TV, FM 

radio or GSM Cellular emissions will not safeguard acceptable probability of detection 

levels, therefore the design of special signals emitted from dedicated beacons is a way to 

bring out all stealth's design weaknesses. This paper analyzes LPI waveforms via their 

Autocorrelation, their Periodic Ambiguity and Periodic Autocorrelation Functions for the 

bistatic radar which will open the way to discover new optimum target detection 

geometries and denoising strategies. 
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1. INTRODUCTION 

Airwaves are awash with commercial radiowave broadcasts emitted by WiFi, WiMax 

transmissions, DVB TV, FM radio or GSM cellular phone stations. Military researchers have 

thought long ago of using them as sources of RF radiation as a substitute of radar transmitters. 

This freely available radiation reflected from flying objects of any kind, will form a multistatic 

opportunistic passive radar that will detect a target by generating position and kinematic tracks 

equivalent to those of a regular monostatic radar. Furthermore, stealthy targets will be detected 

with much higher probability because a multistatic radar receiver can catch scattered reflections 

from a stealth aircraft which is structurally optimized only to minimize reflected signal from the 

direction of the illuminating source and cannot prevent scattering of radiation to other directions. 

A radar detector classically searches the trace of a target in the output of a matched filter. 

Classically, the performance of a radar waveform is evaluated and presented in terms of the 

ambiguity function, originated in the 1950s by F. Gini et. al. [1], and which expresses the point 
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target response of the signal u(t) as a function of delay τ and Doppler shift ν (or equivalently 

target range and velocity),  

       
22 *, exp 2u x u x j x dx                         (1) 

in the form of two dimensional plot.  

 

2. THE BISTATIC RADAR EQUATION  

 

The range equation for a monostatic radar is given by  [2] : 
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where  R is the range from the radar to the target, PT  is  the transmitter power output, GT is the 

transmitting antenna gain, GR is receiving antenna gain,  λ is the carrier wavelength,   σ is target 

cross section,   F is the atmospheric attenuation factor,  k is Boltzmann’s constant, TS  is 

receiving system noise temperature, and Bn is the receiver’s noise bandwidth, ( S/N)min is the 

minimum  SNR required for detection, and  L accounts for various losses. The coverage area 

resembles a circle around the radar. This causes the SNR to be constant at a given range [2]: 
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The lines of constant  SNR around the node are called  SNR contours stemming from the 

geometric Cassini curve. The circular shape of the SNR contours means that the area is calculate 

by [6]: 

2A R  

where  R is the distance from the node to a given Cassini curve.  

For the bistatic radar, the maximum range equation is given by [2] : 
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where RT is transmitter to target range,  RR is receiver to target range, FT is the atmospheric 

attenuation factor from the transmitter to the target, FR is the atmospheric attenuation factor from 

the target to the receiver, and  κ is the bistatic maximum range product. 

Each Cassini oval represents a constant SNR level. RT and RR change as their intersection on a 

given  SNR contour moves. The target position is considered to be this point of intersection. 

From the above equation, the SNR of the bistatic radar is given by [2] : 

 
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Figure 1. Bistatic radar Cassini ovals 

From [2] we can also derive the area within the ovals of Cassini for a bistatic system, which can 

be used to compare different bistatic systems. This area is given as [2]: 
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3. NETTED RADAR 

The netted radar system is a network of identical systems at each node, using the 

synchronization across transmitters and receivers.  The target is an isotropic scatterer and a noise 

limited system performance has been achieved. Such a distributed radar system allows the 

potential SNR gains to approach n
2 

where n is the number of sensor nodes. Synchronization is the 

key requirement in order to realize this potential. 

The general radar range equation is modified to yield the range equation for the distributed radar 

[2]: 

   
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where R Ti is range from transmitter i to the target, RRj is range from receiver  j to the target, and 

(S/N)ij is the  SNR when node  i is the transmitter and  j is the receiver. The indices of summation 

are due to the collective nature of the system as every node transmits a pulse and all radars 

receive returns due to every transmitted pulse. Each of these actions contributes to the overall 

system’s  SNR, resulting in the potential n
2
 gains. Table 1 illustrates the affect the indices of 

summation have on the total  SNR for a distributed radar network with  n =3 . The rows represent 

the summation over  i and the columns represent the summation over  j . 

 j=1 j=2 j=3 

i=1 Tx1/Rx1 Tx1/Rx2 Tx1/Rx3 

i=2 Tx2/Rx1 Tx2/Rx2 Tx2/Rx3 

i=3 Tx3/Rx1 Tx3/Rx2 Tx3/Rx3 

Table 1. Distributed radar network   

In order to evaluate the performance of radar systems with different numbers of nodes, a means 

to plot these systems must be developed. This section expands the work done in [4] in order to 

develop a means to compare a monostatic radar system to a distributed radar system. 

 

i. GENERAL EXPRESSION FOR R 

The  Cassini curve is a curve for which the product of multiple polar radii is constant. This is a 

generalization of the definition of Cassini oval (n = 2) provided in [2], as described above. This 

definition is expressed as [2]: 
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where n is the number of nodes Ri is the distance from the ith node to a Cassini curve and   α   is 

a constant. The general equation for R, which is the distance from the origin point on a Cassini 

curve (given in polar form), is [2]:  

         
1

2cosn

n
R n

R





                                                      (9)     

where θ  is the angle used in the polar plot ( 0 ≤ θ ≤ 2 π). Manipulating terms in the above 

equation yields the range from the origin to a point on a Cassini curve [2]: 

      2cos sin
n

R r n n                                              (10)

                      

 

where r is the radius from the origin to each node (and therefore dictates the size of the curves). 

The geometry of the sensor network affects the variable r which is different for each formation. 

In order to simplify the results for these shapes and provide a more general expression for  R than 

Equation (10), the following values for  r are established for n=2, n=3(equilateral triangle), n=4 

(square) [2]: 
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ii. TWO NODES 

For the system consisting of n=2 nodes and the use of the Pythagorean theorem, the ranges 

RR,RT can be expressed as [2]: 

2 2 2( / 4)RR R d Rdcos                                             (12)  

2 2 2( / 4)TR R d Rdcos                                             (13)   

The product of the above ranges is [2]: 
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For κ = 0 the above equation transforms to [2]: 
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For n = 2, we also have [2,4]:      
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where d is the separation of the sensor nodes. 

There are three cases for the Cassini ovals where: 

 For  2d k we get two ovals centered on each node 

 For 2d k we get a closed curve 

 For  2d k the curve is sinusoidal spiral or lemniscates 

 

Figure 2. Cassini Ovals for n = 2 nodes 
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iii. THREE NODES 
 

For n = 3 nodes configuration we use the same technique as we used for the n=2 nodes 

configuration with [2]: 
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                                    (17) 

and the three cases for Cassini curves become: 

 For  3d k we get three ovals centered on each node 

 For 3d k we get a closed curve 

 For 3d k the curve is sinusoidal spiral or lemniscate 
 
 

 
 
 

Figure 3. Cassini Ovals for n=3 nodes 
 

 

We observe that the coverage is not symmetrical due to the odd number of nodes. Below we 

compare the monostatic and a 3-node netted radar network. The extra coverage, due to this 

configuration, is more than obvious, covering a 360 degrees sector and extending the range even 

100 kilometers longer than the monostatic case. 
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Figure 4. Comparison of coverage between n = 1 and n = 3 nodes Cassini Ovals 
 

 

 

 

4. LPI RADARS 
 

Radars, in general, transmit pulses with small pulsewidth. This has nothing in common with 

the LPI radars, where longer duration pulses are emitted in order to deceive the target’s systems 

and believed to be a CW radar emission. This property is expressed by the parameter known as 

the Duty Cycle of the radar and which expresses the ratio of average power to the maximum 

radiated power of the radar. 
  

      /dc Pavg Pmax                                                              (18) 

 

LPI radars use waveforms that don’t differ from the classical pulse compression waveforms 

used in conventional pulse doppler radars. The main difference though, is that the signal carrier is 

a continuous wave. The pulse compression techniques instead, are the same and use frequency 

coding (frequency shift, FSK) or phase coding (phase shifting, PSK) or combined frequence and 

phase coding (FSK / PSK waveforms). The extraction of the pulse characteristics from the 

receiver depend on the complexity of the waveform. 
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5. AMBIGUITY FUNCTION, PERIODIC AMBIGUITY FUNCTION AND 

PERIODIC AUTOCORRELATION FUNCTION IN LPI SIGNALS [4] 

If we consider a phase-modulated CW signal, where N  is the number of phase states (codes), 

while    is the duration of each different state (subcode), the period of the signal is given by the 

relation: 

C bT N t                                                           (19) 

 

Then the complex periodic signal is mathematically described by the relationship: 

                    c bu t u t nT u t N t                                                 (20) 

where:   = 0, ± 1, ± 2, ± 3, ... 

The Autocorrelation Function (ACF) of the signal expresses the response of the tuned filter of 

the receiver to the input signal. In particular, the response of the filter equals the complex 

conjugate of the emitted signal. Thus, the input signal passing through the tuned filter, in 

practice, correlates with its image from which the delay is calculated. The Periodic 

Autocorrelation Function (PACF) is used on the CW radar and essentially gives exactly what the 

ACF, the response of the tuned filter to the input signal. The PACF form, however, is different 

from that of ACF, since the transmitted signal - like the one received - on an LPI radar is a 

periodic waveform, which contains the NN copy number of the encoded signal. Consequently, 

the PACF study is more appropriate in the case of LPI radar. The PACF is given by the 

following relationship: 

      
*
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                                  (21) 

 

Where: τ is the time delay while the operator (*) denotes the complex conjugate. Given that 

the signal is continuous and periodic, it follows from the above equation that the PACF is 

maximal when the delay takes values that are multiples of the code period  b, ie: 

1, 0(modN )
R( t )

0, 0(modN )

c

b

c







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
                                (22) 

 

Equation (22) practically means that CW waveforms, formed by a periodic function, can 

theoretically have the ideal PACF, i.e. zero side lobes. The autocorrelation function is sufficient 

to describe whether the received radar signal is shifted in time relative to its emitted analog, but it 

does not give any information about the change in its doppler frequency. As known, when the 

signal returning to the receiver is derived from a moving target, it has a frequency shift due to 
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doppler the size of which needs to be known so that the frequency response of the tuned receiver 

is suitably matched to the frequency of the received signal, so it finally operates the tuned filter 

correctly. 

Thus, the Periodic Ambiguity Function (PAF) is defined as the function describing the result 

of the correlation of N periodic copies of  the emitted signal to the received CW signal for target 

detection. In fact, PAF expresses the response of the matched radar receiver to the input signal 

and includes any change in the doppler frequency and also in the delay. PAF is the analog of the 

Ambiguity Function (AF) used in pulse radars. The only difference is that PAF refers to a 

continuous wave radar where the transmitted CW signal is formed by a periodic function with 

period  , whereby the reference signal for the tuned receiver is a signal consisting of   periods. 

So if   ( ) is the reference signal generated by N number of periods, then PAF for the tuned 

receiver is given by: 

* 2

0

1
( , ) ( ) ( ) j tu t t u t e dt  



  
 

                                 (23) 

where the delay τ is considered constant, while   is the doppler displacement. It can also be 

shown that the following relationship applies: 

   
sin( )

( , ) ( , )
sin( )

N
     







 
                                                 (24) 

where: | χ (τ,  ) | is the PAF for a period of the signal. Consequently, PAF of N signal periods 

can be calculated by multiplying the PAF of a period as in equation (23). It should be noted that 

the corresponding PACF of N periods of a signal result from the PACF of a period multiplied 

simply by  . 

Similarly to AF, PAF has a maximum equal to 1 when   = τ = 0 (beginning of axes) in the 

sense that the response of the custom filter is always the maximum when the associated signal is 

the copy of itself when is not delayed in time or altered in frequency. So by studying PAF, we 

can see changes in the frequency or time of the received signal. PAF also shows symmetry wrt 

both axes ( , τ). In terms of time, the symmetry of PAF is expressed by the relationship: 

 (nT, ) (0, )                                                           (25) 

where:   is any integer. Similarly, in terms of Doppler frequency, symmetry is expressed as: 

   ( ,m/ T) ( ,m/ T)vT                                                     (26) 

where:   /   are intersections along the doppler axis (  =   /  ) and   = 0, ± 1,  2, ....  
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It is easy to see that for   = 0, which is equivalent to the intersection of the time axis, the PAF 

graph is the same as the PACF. 

 

i. Pulse 
 

 

To begin with we will start observing the Ambiguity Function (AF) and Periodic Ambiguity 

Function (PAF) of a constant frequency pulse (unmodulated) in order to start as simple as 

possible. 

 

The Ambiguity Function of this pulse is  illustrated below [5]:  
 

*( , ) (t)u (t )exp(j2 t)dtu    



                                            (27)  

 

In Figure 5, in which the two quadrants of the pulse are plotted, the triangular zero Doppler cut  

is shown clearly. The pulse’s parameters, autocorrelation and spectrum plots are also shown 

below along with the Periodic Ambiguity plot. 

 
 

 

 

 

 

Figure 5. Ambiguity function plot of a constant frequency pulse 
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Figure 6. Signal parameters plot of a constant frequency pulse 

 

 

 
 

Figure 7. Autocorrelation and Spectrum plots of a constant frequency pulse 
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Figure 8. Periodic Ambiguity function plot of a constant frequency pulse 

If more than one unmodulated pulses are transmitted, we are talking about a coherent pulse train 

(CPT). In our Ambiguity Function, signal characteristics, autocorrelation and Spectrum and 

Periodic Ambiguity Function plots we use six identical pulses. The production of more 

complicated signals though, needs some diversity.  

 

ii. Coherent Pulse Train 

For a coherent pulse train the Ambiguity Function is [5] :  
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,  zero elsewhere        (28) 

where | ( , ) |T   is Ambiguity Function of an individual pulse. For the illustrated unmodulated 

pulse below, we use the equation    [5]  : 

sin (1 / )
| ( , ) | 1

(1 / )
T

  
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  
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, | |   ,  zero elsewhere         (29)  
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Figure 9. Ambiguity function plot of a 6 pulses Pulse train 

  

Figure 10. Signal parameters plot of a 6 pulses Pulse train 
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Figure 11. Autocorrelation and Spectrum plots of a 6 pulses Pulse train 

 

Figure 12. Periodic Ambiguity function plot of a 6 pulses Pulse train 
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iii. Linear Frequency Modulated (LFM) and Weighted  Linear Frequency 

Modulated (LFM) CW signal 

 

If  pulse compression method has to be introduced in order to have more efficient along with 

complicated pulses, then we should start with the frequency modulation method. The well-known  

Linear Frequency Modulation (LFM) is the one that will be discussed first.  
Its Ambiguity Function is [5]: 

 

     
| | sin( ( ( / ))(1 | | / ))

| ( , ) | (1 )
( ( / ))(1 | | / )

    
  

   

    
 

     
,  |τ| ≤ Τ , zero elsewhere                (30) 

 

 

Figure 14 illustrates the phase and frequency variation of a Linear Frequency Modulated 

(LFM) CW signals. Figure 16 shows the PAF of the signal while in Figure 15 is shown its 

corresponding ACF and PACF. M is the number of signal samples, while    is the sampling time, 

so obviously the total duration of the signal is    . One of the desired characteristics of the PAF 

of an LPI waveform is that the level of the side lobes must be as minimal as possible. This is 

because when the return of a target from the radar sidelobes is strong, there is the possibility that 

a smaller RCS target will not be detected because its return is lost in the sidelobes of the previous 

target. 

The FMCW radar originally was designed to address the weakness of CW radar (unmodulated 

signal) to calculate the distance of a target. Afterwards, it turned out that FMCW waveforms 

have very good LPI features and also have several interesting advantages. FMCW waveforms 

have increased interference resistance in the sense that they are deterministic signals, and 

consequently any interfering signal lacking the same mathematical pattern can be recognized by 

the radar receiver and discarded, [2]. Yet another advantage is that the energy of the emitted 

signal diffuses over a wide  modulation bandwidth, resulting in the signal eventually being very 

low in power and therefore difficult to detect. This is particularly desirable in cases where a low 

level of emissions from a platform is required. Figure 15 shows the ACF and PACF of the signal. 

As shown, the level of the side lobes in the ACF is relatively low, but the signal does not have 

the ideal PACF since there are sidelobes over time in the PACF plot. Figure 16 also shows the 

PAF of the signal, where the side lobes are plotted in terms of the doppler frequency, meaning 

that the signal does not behave well in the presence of doppler shifts. 
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Figure 13. Ambiguity Function plot of a Linear Frequency Modulated (LFM) CW signal 

 

Figure14. Signal parameters plot of a Linear Frequency Modulated (LFM) CW signal 
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Figure 15. Autocorrelation and  Spectrum plot of a Linear Frequency Modulated (LFM) CW signal 

 

Figure 16.  Periodic Ambiguity function of a Linear Frequency Modulated (LFM) CW signal 
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LFM has the positive outcome of improved range resolution, resulting from the  increase of the 

bandwidth. The negative outcome of the LFM signal is the sidelobes’ amplitude, that can be 

observed in Figure 13. In order to mitigate this phenomenon, spectral reshaping with amplitude 

or frequency weighting was introduced. In this simulation, the Hamming weighted LFM pulse 

was used. 

Comparing Figure 13 with Figure 17 it is obvious that the sidelobes of the central lobe are 

reduced. It has also been observed the weighting has effects even at higher Doppler frequencies. 

 

 

 

 

Figure 17. Ambiguity function plot of a weighted LFM signal 
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Figure 18. Signal parameters plot of a weighted LFM signal 

 

Figure 19. Autocorrelation and Spectrum plots of a weighted LFM signal 
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Figure 20. Periodic Ambiguity function plot of a weighted LFM signal 

 

iv. Costas code 
 

Another technique that is named Costas, is the exact opposite LFM pulses. It uses discrete 

frequency coding . 

The Autocorrelation fuction of Costas can be found by overlapping two same matrices and in 

turn shifting them, in order to take into account delay (horizontal axis shifts) and Doppler 

(vertical axis shifts).  

In the LFM,  the number  of coinciding dots will be N = M − |m|, representing delay and Doppler 

shifts of equal number of units. In the Costas signal case, this number’s maximum value is one 

for all but the zero-shift case, where all dots coincide (N = M). 

This unique characteristic gives us  a narrow peak of the Ambiguity Function at the origin, and 

low sidelobes anywhere else.  
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Figure 21.  Binary matrix representation of LFM (left) and Costas coding (right) [5] 

 

 

 

 
 

Figure 22.  Example of one coincidence occurring at τ/tb=1, ν/Δf=1 [5] 

 

A closed-form expression of the Ambiguity Function of Costas is [5]: 
 

    

1 1

1
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,  | | bt  , zero elsewhere,            (32) 

in which          ( )( | |)m n bf f t          ,    ( )( )m n bf f t                                                         (33) 

 

 

Below are plotted the Ambiguity Function (AF) (Fig. 23), the Autocorrelation Function (ACF) 

and Periodic Autocorrelation Function (PACF)  (Fig. 25) and the Periodic Ambiguity Function 

(PAF) (Fig. 26) plots of the Costas signal derived from the numerical Ambiguity Function 

plotting program. The Ambiguity Function is calculated from coherent processing and the 
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sidelobe matrix doesn’t use phase coherence. From these indications we proceed to the result that 

non-coherent processing will fit to Costas signals.  At the zero-Doppler cut are shown various  

zero values at multiples of tb and there are many sidelobes, as expected. 

 

Figure 23. Ambiguity function plot of a 7 elements Costas signal 

 

Figure 24. Costas signal parameters plot of a 7 elements Costas signal 
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Figure 25.  Autocorrelation and Spectrum plot of a 7 elements Costas signal 

 

Figure 26.  Periodic Ambiguity Function (PAF) of a 7 elements Costas signal 
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v. Barker code 

Another pulse, that uses phase coding is named Barker code signal. It uses a set  of M binary 

phases generating a peak-to-peak sidelobe ratio of M.  It is well known that no binary Barker 

codes exists for 13 <M < 1 and for all odd M >13. It is also widely believed that there is no 

Barker code for all M >13. The main positive aspect of the binary Barker is its simplicity. Its 

main drawback is its limitation concerning the values of M. Below there is a table of all known 

binary Barker Codes followed by the Autocorrelation Function, Signal parameters, 

Autocorrelation and Spectrum and the Periodic Autocorrelation function plots. 

Code Length Code 

2 11 or 10 

3 110 

4 1110 or 1101 

 5 11101 

7 1110010 

11 11100010010 

13 1111100110101 

                                                 Table 2.   Binary Barker codes    

 

Figure 27. Ambiguity function plot of a 13 elements Barker code signal 
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Figure 28. Signal parameters plot of a 13 elements Barker code signal 

 

 

Figure 29. Autocorrelation and Spectrum plots of a 13 elements Barker code signal 
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Figure 30. Periodic Ambiguity function plot of a 13 elements Barker code signal 

 

vi. Frank code PSK 
 

Frank code PSK waveforms are widely used in LPI radars, implementing the linear frequency 

modulation stepwise (step approximation). The values of the code were expressed by Frank using 

the elements of an L × L discrete Fourier transform matrix given by [5]: 
 

   

2

0 0 0 0

0 1 2 1

0 1 4 2(L 1)

0 1 2(L 1) (L 1)

L

L

 
 


 
 
 
 
    

                                                 (34)             

 

 

The original Frank code has two important properties: 

i) the code is perfect and  

ii) the aperiodic autocorrelation exhibits relatively low sidelobes  

Its main negative property is that it is applied only for codes of perfect square length (M = L
2
). 
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The Ambiguity Function (AF) of a 16-element  Frank Code signal is plotted below (Figure 32) 

along with its Autocorrelation Function (ACF) , the Periodic Autocorrelation Function (PACF)  

(Figure 34) and its Periodic Ambiguity Function (PAF) (Figure 35). 

 
Figure 31. Ambiguity function plot of a 16 elements Frank Code signal 

 

Figure 32. 16 Signal parameters plot of a 16 elements Frank Code signal  
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Figure 33. Autocorrelation and Spectrum plots of a 16 elements Frank Code signal 

 

Figure 34.  Periodic Ambiguity function plot of a 16 elements Frank Code signal  
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vii. Polyphase codes P1, P2, P3, P4 

Instead of using Frank code, we can use other PSK waveforms called polyphase codes. 

Polyphase codes simulate the Linear Frequency Modulation (LFM) waveform. They differ from 

each other , having different code for the signal phase changes and  the way they are generated in 

hardware. P1, P2, P3 and P4 codes have low level of sidelobes in the ACF and excellent 

tolerance to Doppler shifts. 

P1, P2, P3 and P4 codes were introduced by Lewis and Kretschmer (P1, P2:1981 and 

P3,P4:1982).  

P1 and P2 codes are stem from the Frank code.Their main drawback is that they can be 

applied only for square length (such as the Frank code). On the other hand, P3 and P4 codes are 

can be applied for any length M. 

Lewis and Kretschmer later on (1983), proved that P3 and P4 codes show more tolerance than  

the Frank or P1 and P2 codes to Doppler shifts. For this reason we used P4 codes in our plots. 

P4 code is defined for any length by [5]: 
 

 
2 1

1
2

m

m M
m

M




  
   

 
  ,    where 1 ≤ m ≤ M                      (35)  

 

 

 

 

Figure 35. Ambiguity function plot of a 25 elements P4 signal 
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Figure 36. Signal parameters plot of a 25 elements P4 signal 

 

Figure 37. Autocorrelation and Spectrum plots of a 25 elements P4 signal 
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Figure 38. Periodic Ambiguity function plot of a 25 elements P4 signal 

 

6. AMBIGUITY FUNCTION IN A BISTATIC RADAR [3] 
 

The Ambiguity Function of the Monostatic Radar (Equation 1) differs depending on the 

relative target position in the bistatic plane. The Tsao et. Al. [3] version of this equation shows 

the non-linear relationships between target velocity and Doppler shift. Also, between target range 

and delay.  The Ambiguity Function for a bistatic radar configuration is expressed as [3]:     

 

 
     

    

2

2
, , , ,

, , , , ,
exp , , , , , ,

A H

H A

H H a a

a R R H R R

R R H a R

D R H R D R a R

f t R L f t R L

R R V V L
j R V L R V L t dt

   
 

   






  


  
 

     (36) 

where RR and RT are the ranges of the target from the transmitter and the receiver , V is the 

bistatic range rate, θR is the angle of the target measured from the receiver, L is the bistatic 

baseline, Τ is the transmitter–target–receiver delay time and subscripts H and a are hypothesized 

and actual values. 
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The illustration of this equation is depicted in the figures below, where a target’s location and 

direction  gives us the ambiguity function’s results for four different cases (Figure 3 a,b,c,d). The 

waveform used is consisted of three rectangular pulses. From these figures we assume that when 

the target approaches the baseline between the receiver and the transmitter Figure 3 c,d (in Figure 

3d a complete change of the scheme is observed), the change of the plot is more drastical than 

that of Figure 3 a,b, where the target approaches from a different direction. 
 

 
 

Figure 39.  Bistatic ambiguity functions for four different target patterns [1] 

 

 

7.   CONCLUSIONS 

 

As noted, bistatic radar alone cannot provide an adequate correlation peak for all relative 

locations of the target versus the Tx/Rx pair (e.g Figure 39). Thus, the netted radar solution 

seems to provide a realistic capability of detecting a target by accumulating individual target 

detections from the scattered receivers in the net. Regarding the LPI waveforms, P4 coding is a 

brilliant choice for a modern radar configuration due to low level of sidelobes in the ACF and 

excellent tolerance to Doppler shifts. Research continues in order to help the derivation of 

algorithms for optimal detection and the frequency range (e.g. DVB-T, FM) where a netted radar 

network can provide us a better performance in stealth target detection. 
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