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Abstract. Bäcklund transformations (BTs) are traditionally regarded as a tool for 
integrating nonlinear partial differential equations (PDEs). Their use has been recently 
extended, however, to problems such as the construction of recursion operators for 
symmetries of PDEs, as well as the solution of linear systems of PDEs. In this article, the 
concept and some applications of BTs are reviewed. As an example of an integrable linear 
system of PDEs, the Maxwell equations of electromagnetism are shown to constitute a BT 
connecting the wave equations for the electric and the magnetic field; plane-wave 
solutions of the Maxwell system are constructed in detail. The connection between BTs 
and recursion operators is also discussed.  

Keywords: Bäcklund transformations, integrable systems, Maxwell equations, 
electromagnetic waves  

PACS: 02.30.Ik, 02.30.Jr, 41.20.Jb  
 

1.  INTRODUCTION 

Bäcklund transformations (BTs) were originally devised as a tool for obtaining solutions of 
nonlinear partial differential equations (PDEs) (see, e.g., [1] and the references therein). They 
were later also proven useful as recursion operators for constructing infinite sequences of 
nonlocal symmetries and conservation laws of certain PDEs [2–6].  

In simple terms, a BT is a system of PDEs connecting two fields that are required to 
independently satisfy two respective PDEs [say, (a) and (b)] in order for the system to be 
integrable for either field. If a solution of PDE (a) is known, then a solution of PDE (b) is 
obtained simply by integrating the BT, without having to actually solve the latter PDE (which, 
presumably, would be a much harder task). In the case where the PDEs (a) and (b) are 
identical, the auto-BT produces new solutions of PDE (a) from old ones.  

 As described above, a BT is an auxiliary tool for finding solutions of a given (usually 
nonlinear) PDE, using known solutions of the same or another PDE. But, what if the BT itself is 
the differential system whose solutions we are looking for? As it turns out, to solve the problem 
we need to have parameter-dependent solutions of both PDEs (a) and (b) at hand. By properly 
matching the parameters (provided this is possible) a solution of the given system is obtained.  
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 The above method is particularly effective in linear problems, given that parametric solutions 
of linear PDEs are generally not hard to find. An important paradigm of a BT associated with a 
linear problem is offered by the Maxwell system of equations of electromagnetism [7,8]. As is 
well known, the consistency of this system demands that both the electric and the magnetic field 
independently satisfy a respective wave equation. These equations have known, parameter-
dependent solutions; namely, monochromatic plane waves with arbitrary amplitudes, 
frequencies and wave vectors (the “parameters” of the problem). By inserting these solutions 
into the Maxwell system, one may find the appropriate expressions for the “parameters” in order 
for the plane waves to also be solutions of Maxwell’s equations; that is, in order to represent an 
actual electromagnetic field.  

 This article, written for educational purposes, is an introduction to the concept of a BT and its 
application to the solution of PDEs or systems of PDEs. Both “classical” and novel views of a 
BT are discussed, the former view predominantly concerning integration of nonlinear PDEs 
while the latter one being applicable mostly to linear systems of PDEs. The article is organized 
as follows:  

 In Section 2 we review the classical concept of a BT. The solution-generating process by 
using a BT is demonstrated in a number of examples.  

 In Sec. 3 a different perception of a BT is presented, according to which it is the BT itself 
whose solutions are sought. The concept of conjugate solutions is introduced.  

 As an example, in Secs. 4 and 5 the Maxwell equations in empty space and in a linear 
conducting medium, respectively, are shown to constitute a BT connecting the wave equations 
for the electric and the magnetic field. Following [7], the process of constructing plane-wave 
solutions of this BT is presented in detail. This process is, of course, a familiar problem of 
electrodynamics but is seen here under a new perspective by employing the concept of a BT.  

 Finally, in Sec. 6 we briefly review the connection between BTs and recursion operators for 
generating infinite sequences of nonlocal symmetries of PDEs.  

2.  BÄCKLUND TRANSFORMATIONS: CLASSICAL VIEWPOINT 

Consider two PDEs P[u]=0 and Q[v]=0 for the unknown functions u and v, respectively. The 
expressions P[u] and Q[v] may contain the corresponding variables u and v, as well as partial 
derivatives of u and v with respect to the independent variables. For simplicity, we assume that 
u and v are functions of only two variables x, t. Partial derivatives with respect to these variables 
will be denoted by using subscripts: ux , ut , uxx , utt , uxt , etc.  

Independently, for the moment, also consider a pair of coupled PDEs for u and v:  
 

    1 2[ , ] 0 ( ) [ , ] 0 ( )B u v a B u v b                                           (1) 

 
where the expressions Bi [u,v] (i=1,2) may contain u, v as well as partial derivatives of u and v 
with respect to x and t. We note that u appears in both equations (a) and (b). The question then 
is: if we find an expression for u by integrating (a) for a given v, will it match the corresponding 
expression for u found by integrating (b) for the same v? The answer is that, in order that (a) 
and (b) be consistent with each other for solution for u, the function v must be properly chosen 
so as to satisfy a certain consistency condition (or integrability condition or compatibility 
condition).  

By a similar reasoning, in order that (a) and (b) in (1) be mutually consistent for solution for v, 
for some given u, the function u must now itself satisfy a corresponding integrability condition.  

If it happens that the two consistency conditions for integrability of the system (1) are 
precisely the PDEs P[u]=0 and Q[v]=0, we say that the above system constitutes a Bäcklund 
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transformation (BT) connecting solutions of P[u]=0 with solutions of Q[v]=0. In the special case 

where PQ, i.e., when u and v satisfy the same PDE, the system (1) is called an auto-Bäcklund 
transformation (auto-BT) for this PDE.  

Suppose now that we seek solutions of the PDE P[u]=0. Assume that we are able to find a 

BT connecting solutions u of this equation with solutions v of the PDE Q[v]=0 (if PQ , the auto-
BT connects solutions u and v of the same PDE) and let v=v0(x,t) be some known solution of 
Q[v]=0. The BT is then a system of PDEs for the unknown u,  

 

0[ , ] 0 , 1,2iB u v i                                                 (2) 

 
The system (2) is integrable for u, given that the function v0 satisfies a priori the required 

integrability condition Q[v]=0. The solution u then of the system satisfies the PDE P[u]=0. Thus 
a solution u(x,t) of the latter PDE is found without actually solving the equation itself, simply by 
integrating the BT (2) with respect to u. Of course, this method will be useful provided that 
integrating the system (2) for u is simpler than integrating the PDE P[u]=0 itself. If the 
transformation (2) is an auto-BT for the PDE P[u]=0, then, starting with a known solution v0(x,t) 
of this equation and integrating the system (2), we find another solution u(x,t) of the same 
equation.  

Let us see some examples of the use of a BT to generate solutions of a PDE:  
 
1. The Cauchy-Riemann relations of Complex Analysis,  
 

        ( ) ( )x y y xu v a u v b                                           (3) 

 
(here, the variable t has been renamed y) constitute an auto-BT for the Laplace equation,  
 

        [ ] 0xx yyP w w w                                                   (4) 

 
Let us explain this: Suppose we want to solve the system (3) for u, for a given choice of the 

function v(x,y). To see if the PDEs (a) and (b) match for solution for u, we must compare them 
in some way. We thus differentiate (a) with respect to y and (b) with respect to x, and equate the 
mixed derivatives of u. That is, we apply the integrability condition (ux)y= (uy)x . In this way we 
eliminate the variable u and find the condition that must be obeyed by v(x,y):  

 

[ ] 0xx yyP v v v    . 

 
Similarly, by using the integrability condition (vx)y= (vy)x to eliminate v from the system (3), we 

find the necessary condition in order that this system be integrable for v, for a given function 
u(x,y):  

[ ] 0xx yyP u u u    . 

 
In conclusion, the integrability of system (3) with respect to either variable requires that the 

other variable must satisfy the Laplace equation (4).  
Let now v0(x,y) be a known solution of the Laplace equation (4). Substituting v=v0 in the 

system (3), we can integrate this system with respect to u. It is not hard to show (by eliminating 
v0 from the system) that the solution u will also satisfy the Laplace equation (4). As an example, 
by choosing the solution v0(x,y)=xy , we find a new solution  u(x,y)= (x

2 –y2)/2 +C .  
2. The Liouville equation is written  
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[ ] 0u u
xt xtP u u e u e                                           (5) 

 
Due to its nonlinearity, this PDE is hard to integrate directly. A solution is thus sought by 

means of a BT. We consider an auxiliary function v(x,t) and an associated PDE,  
 

        [ ] 0xtQ v v                                                        (6) 

 
We also consider the system of first-order PDEs,  
 

        
( )/2 ( )/22 ( ) 2 ( )u v u v

x x t tu v e a u v e b                           (7) 

 
Differentiating the PDE (a) with respect to t and the PDE (b) with respect to x, and eliminating 

(ut vt) and (ux+vx) in the ensuing equations with the aid of (a) and (b), we find that u and v 
satisfy the PDEs (5) and (6), respectively. Thus, the system (7) is a BT connecting solutions of 
(5) and (6). Starting with the trivial solution v=0 of (6), and integrating the system  

 
/2 /22 , 2 ,x t

u uu e u e   

 
we find a nontrivial solution of (5):  

( , ) 2ln
2

x t
u x t C

 
  

 
 . 

 
 3. The “sine-Gordon” equation has applications in various areas of Physics, e.g., in the study 

of crystalline solids, in the transmission of elastic waves, in magnetism, in elementary-particle 
models, etc. The equation (whose name is a pun on the related linear Klein-Gordon equation) is 
written  

 

        [ ] sin 0 sinxt xtP u u u u u                                        (8) 

 
The following system of equations is an auto-BT for the nonlinear PDE (8):  
 

        
1 1 1

( ) sin , ( ) sin
2 2 2 2

x t

u v u v
u v a u v

a

    
      

   
                    (9) 

 
where a (≠0) is an arbitrary real constant. [Because of the presence of a, the system (9) is called 
a parametric BT.] When u is a solution of (8) the BT (9) is integrable for v, which, in turn, also is 
a solution of (8): P[v]=0; and vice versa. Starting with the trivial solution  v=0  of  vxt= sin v , and 
integrating the system  

2
2 sin , sin ,

2 2
x t

u u
u a u

a
   

 
we obtain a new solution of (8):  
 

( , ) 4arctan exp
t

u x t C ax
a

  
   

  
 . 



PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2016, Hellenic Naval Academy 

C-7 

3.  CONJUGATE SOLUTIONS AND ANOTHER VIEW OF A BT 

As presented in the previous section, a BT is an auxiliary device for constructing solutions of 
a (usually nonlinear) PDE from known solutions of the same or another PDE. The converse 
problem, where solutions of the differential system representing the BT itself are sought, is also 
of interest, however, and has been recently suggested [7,8] in connection with the Maxwell 
equations (see subsequent sections).  

To be specific, assume that we need to integrate a given system of PDEs connecting two 
functions u and v:  

        [ , ] 0 , 1,2iB u v i                                                 (10) 

 
Suppose that the integrability of the system for both functions requires that u and v 

separately satisfy the respective PDEs  
 

        [ ] 0 ( ) [ ] 0 ( )P u a Q v b                                         (11) 

 
That is, the system (10) is a BT connecting solutions of the PDEs (11). Assume, now, that 

these PDEs possess known (or, in any case, easy to find) parameter-dependent solutions of the 
form  

        ( , ; , , ) , ( , ; , , )u f x y v g x y                                    (12) 

 
where α, β, κ, λ, etc., are (real or complex) parameters. If values of these parameters can be 

determined for which u and v jointly satisfy the system (10), we say that the solutions u and v of 
the PDEs (11a) and (11b), respectively, are conjugate through the BT (10) (or BT-conjugate, for 
short). By finding a pair of BT-conjugate solutions one thus automatically obtains a solution of 
the system (10).  

      Note that solutions of both integrability conditions P[u]=0 and Q[v]=0 must now be known 
in advance! From the practical point of view the method is thus most applicable in linear 
problems, since it is much easier to find parameter-dependent solutions of the PDEs (11) in this 
case.  

      Let us see an example: Going back to the Cauchy-Riemann relations (3), we try the 
following parametric solutions of the Laplace equation (4):  

 
2 2( , ) ( ) ,

( , ) .

u x y x y x y

v x y xy x y

  

  

   

  
 

 
Substituting these into the BT (3), we find that κ=2α, μ=β and λ= –γ. Therefore, the solutions  
 

2 2( , ) ( ) ,

( , ) 2

u x y x y x y

v x y xy x y

  

  

   

  
 

 
of the Laplace equation are BT-conjugate through the Cauchy-Riemann relations.  
      As a counter-example, let us try a different combination:  
 

( , ) , ( , ) .u x y xy v x y xy    
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Inserting these into the system (3) and taking into account the independence of x and y, we 
find that the only possible values of the parameters α and β are α=β=0, so that u(x,y)= v(x,y)=0. 
Thus, no non-trivial BT-conjugate solutions exist in this case.  

4.  EXAMPLE: THE MAXWELL EQUATIONS IN EMPTY SPACE 

An example of an integrable linear system whose solutions are of physical interest is 
furnished by the Maxwell equations of electrodynamics. Interestingly, as noted recently [7], the 
Maxwell system has the property of a BT whose integrability conditions are the electromagnetic 
(e/m) wave equations that are separately valid for the electric and the magnetic field. These 
equations possess parameter-dependent solutions that, by a proper choice of the parameters, 
can be made BT-conjugate through the Maxwell system. In this and the following section we 
discuss the BT property of the Maxwell equations in vacuum and in a conducting medium, 
respectively.  

      In empty space, where no charges or currents (whether free or bound) exist, the Maxwell 
equations are written (in S.I. units) [9]  

 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


    




   



                           (13) 

 

where E  and B  are the electric and the magnetic field, respectively. Here we have a system 
of four PDEs for two fields. The question is: what are the necessary conditions that each of 
these fields must satisfy in order for the system (13) to be self-consistent? In other words, what 
are the consistency conditions (or integrability conditions) for this system?  

      Guided by our experience from Sec. 2, to find these conditions we perform various 
differentiations of the equations of system (13) and require that certain differential identities be 
satisfied. Our aim is, of course, to eliminate one field (electric or magnetic) in favor of the other 
and find some higher-order PDE that the latter field must obey.  

      As can be checked, two differential identities are satisfied automatically in the system 
(13):  

( ) 0 , ( ) 0 ,E B       

 

( ) , ( ) .t t t tE E B B     

 
Two others read  

        
2( ) ( )E E E                                             (14) 

 

        
2( ) ( )B B B                                             (15) 

 
Taking the rot of (13c) and using (14), (13a) and (13d), we find  
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2

2

0 0 2
0

E
E

t
 


  


                                            (16) 

Similarly, taking the rot of (13d) and using (15), (13b) and (13c), we get  
 

        
2

2

0 0 2
0

B
B

t
 


  


                                             (17) 

 
No new information is furnished by the remaining two integrability conditions,  
 

( ) , ( ) .t t t tE E B B     

 
      Note that we have uncoupled the equations for the two fields in the system (13), deriving 

separate second-order PDEs for each field. Putting  
                           

        0 0 2

0 0

1 1
c

c
 

 
                                            (18) 

 
(where c is the speed of light in vacuum) we rewrite (16) and (17) in wave-equation form:  
 

        

2
2

2 2

1
0

E
E

c t


  


                                                (19) 

 

        

2
2

2 2

1
0

B
B

c t


  


                                                 (20) 

 
      We conclude that the Maxwell system (13) is a BT relating solutions of the e/m wave 

equations (19) and (20), these equations representing the integrability conditions of the BT. It 
should be noted that this BT is not an auto-BT! Indeed, although the PDEs (19) and (20) are of 
similar form, they concern different fields with different physical dimensions and physical 
properties.  

      The e/m wave equations admit plane-wave solutions of the form ( )F k r t  , with  

 

        where | |c k k
k


                                             (21) 

 
The simplest such solutions are monochromatic plane waves of angular frequency ω, 

propagating in the direction of the wave vector k :  

 

        
0

0

( , ) exp{ ( )} ( )

( , ) exp{ ( )} ( )

E r t E i k r t a

B r t B i k r t b





  

  
                                   (22) 
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where 0E  and 0B  are constant complex amplitudes. The constants appearing in the above 

equations (amplitudes, frequency and wave vector) can be chosen arbitrarily; thus they can be 
regarded as parameters on which the plane waves (22) depend.  

      We must note carefully that, although every pair of fields ( , )E B  satisfying the Maxwell 

equations (13) also satisfies the wave equations (19) and (20), the converse is not true. Thus, 
the plane-wave solutions (22) are not a priori solutions of the Maxwell system (i.e., do not 
represent actual e/m fields). This problem can be taken care of, however, by a proper choice of 
the parameters in (22). To this end, we substitute the general solutions (22) into the BT (13) to 
find the extra conditions the latter system demands. By fixing the wave parameters, the two 
wave solutions in (22) will become BT-conjugate through the Maxwell system (13).  

      Substituting (22a) and (22b) into (13a) and (13b), respectively, and taking into account 

that 
i k r i k re i k e   , we have  

 
( )

0 0

( )

0 0

( ) 0 ( ) 0 ,

( ) 0 ( ) 0 ,

i t i k r i k r t

i t i k r i k r t

E e e k E e

B e e k B e

 

 

   

   

    

    
 

 
so that  

        0 00 , 0k E k B    .                                            (23) 

 
Relations (23) reflect the fact that that the monochromatic plane e/m wave is a transverse 

wave.  
      Next, substituting (22a) and (22b) into (13c) and (13d), we find  
 

( )

0 0

( ) ( )

0 0

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e E i B e

k E e B e

 

 





   

   

   

 
 

 
( )

0 0 0 0

( ) ( )

0 02

( )

( ) ,

i t i k r i k r t

i k r t i k r t

e e B i E e

k B e E e
c

 

 

  



   

   

    

  
 

 
so that  

        0 0 0 02
,k E B k B E

c


                                       (24) 

 

We note that the fields E  and B  are normal to each other, as well as normal to the direction 
of propagation of the wave. We also remark that the two vector equations in (24) are not 

independent of each other, since, by cross-multiplying the first relation by k , we get the second 

relation.  

      Introducing a unit vector ̂  in the direction of the wave vector k ,  

 

ˆ / ( | | / )k k k k c     , 

 
we rewrite the first of equations (24) as  
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0 0 0

1
ˆ ˆ( ) ( )

k
B E E

c
 


     . 

 
The BT-conjugate solutions in (22) are now written  
 

        
0

0

( , ) exp{ ( )} ,

1 1
ˆ ˆ( , ) ( )exp{ ( )}

E r t E i k r t

B r t E i k r t E
c c



  

  

     
                           (25) 

 
      As constructed, the complex vector fields in (25) satisfy the Maxwell system (13). Since 

this system is homogeneous linear with real coefficients, the real parts of the fields (25) also 
satisfy it. To find the expressions for the real solutions (which, after all, carry the physics of the 
situation) we take the simplest case of linear polarization and write  

 

        0 0,

i

RE E e                                                     (26) 

 

where the vector 0,RE  as well as the number α are real. The real versions of the fields (25), 

then, read  

        
0,

0,

cos ( ) ,

1 1
ˆ ˆ( )cos ( )

R

R

E E k r t

B E k r t E
c c

 

   

   

      
                          (27) 

 

We note, in particular, that the fields E  and B  “oscillate” in phase.  
      Our results for the Maxwell equations in vacuum can be extended to the case of a linear 

non-conducting medium upon replacement of ε0 and μ0 with ε and μ, respectively. The speed of 
propagation of the e/m wave is, in this case,  

 

1

k





    . 

 
In the next section we study the more complex case of a linear medium having a finite 

conductivity.  

5.  EXAMPLE: THE MAXWELL SYSTEM FOR A LINEAR 
CONDUCTING MEDIUM 

Consider a linear conducting medium of conductivity σ. In such a medium, Ohm’s law is 

satisfied: fJ E , where fJ  is the free current density. The Maxwell equations take on the 

form [9]  
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t
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t
  


    




    



                       (28) 

 
By requiring satisfaction of the integrability conditions  
 

2

2

( ) ( ) ,

( ) ( ) ,

E E E

B B B

    

    
 

 
we obtain the modified wave equations  

        

2
2

2

2
2

2

0

0

E E
E

t t

B B
B

t t

  

  

 
   

 

 
   

 

                                      (29) 

 
which must be separately satisfied by each field. As in Sec. 4, no further information is 

furnished by the remaining integrability conditions.  
      The linear differential system (28) is a BT relating solutions of the wave equations (29). 

As in the vacuum case, this BT is not an auto-BT. We now seek BT-conjugate solutions. As can 
be verified by direct substitution into equations (29), these PDEs admit parameter-dependent 
solutions of the form  

 

        

0

0

0

0

ˆ( , ) exp{ ( )}

exp exp( ) ,

ˆ( , ) exp{ ( )}

exp exp( )

E r t E s r i k r t

s
E i k r i t

k

B r t B s r i k r t

s
B i k r i t

k

 



 



     

  
     

  

     

  
     

  

                          (30) 

 

where ̂  is the unit vector in the direction of the wave vector k :  

 

ˆ / ( | | / )k k k k      

 
(υ is the speed of propagation of the wave inside the conducting medium) and where, for 

given physical characteristics ε, μ, σ of the medium, the parameters s, k and ω satisfy the 
algebraic system  

        
2 2 2 0 , 2 0s k sk                                     (31) 

 



PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2016, Hellenic Naval Academy 

C-13 

      We note that, for arbitrary choices of the amplitudes 0E  and 0B , the vector fields (30) are 

not a priori solutions of the Maxwell system (28), thus are not BT-conjugate solutions. To obtain 
such solutions we substitute expressions (30) into the system (28). With the aid of the relation  

 
s s

i k r i k r
k ks

e i k e
k

   
      

    
   

 
 

 
one can show that (28a) and (28b) impose the conditions  

        0 00 , 0k E k B                                                 (32) 

 
As in the vacuum case, the e/m wave in a conducting medium is a transverse wave.  
      By substituting (30) into (28c) and (28d), two more conditions are found:  
 

        0 0
ˆ( )k is E B                                                  (33) 

 

        0 0
ˆ( ) ( )k is B i E                                            (34) 

 
Note, however, that (34) is not an independent equation since it can be reproduced by cross-

multiplying (33) by ̂ , taking into account the algebraic relations (31).  

      The BT-conjugate solutions of the wave equations (29) are now written  
 

        

ˆ ( )
0

ˆ ( )
0

( , ) ,

ˆ( , ) ( )

s r i k r t

s r i k r t

E r t E e e

k is
B r t E e e

 

 


   

   




 

                                  (35) 

 
To find the corresponding real solutions, we assume linear polarization of the wave, as 

before, and set  
 

0 0,

i

RE E e  . 

 
We also put  

2 2| | ; tan /i ik i s k i s e k s e s k        . 

 
Taking the real parts of equations (35), we finally have:  
 

ˆ
0,

2 2
ˆ

0,

( , ) cos( ) ,

ˆ( , ) ( ) cos( ) .

s r
R

s r
R

E r t E e k r t

k s
B r t E e k r t





 

   


 

 

   


     

 

 
      As an exercise, the student may show that these results reduce to those for a linear non-

conducting medium (cf. Sec. 4) in the limit σ0.  
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6.  BTS AS RECURSION OPERATORS 

 
The concept of symmetries of PDEs was discussed in [1]. Let us review the main facts:  
      Consider a PDE F[u]=0, where, for simplicity, u=u(x,t). A transformation  
 

u (x,t)    u΄ (x,t) 
 
from the function u to a new function u΄ represents a symmetry of the given PDE if the 

following condition is satisfied: u΄(x,t) is a solution of F[u]=0 if u(x,t) is a solution. That is,  
 

    [ ] 0 [ ] 0F u when F u                                           (36) 

 
      An infinitesimal symmetry transformation is written  
 

    [ ]u u u u Q u                                                  (37) 

 

where α is an infinitesimal parameter. The function Q[u]Q(x, t, u, ux , ut ,...) is called the 
symmetry characteristic of the transformation (37).  

      In order that a function Q[u] be a symmetry characteristic for the PDE F[u]=0, it must 
satisfy a certain PDE that expresses the symmetry condition for F[u]=0. We write, symbolically,  

 

   ( ; ) 0 [ ] 0S Q u when F u                                         (38) 

 
where the expression S depends linearly on Q and its partial derivatives. Thus, (38) is a 

linear PDE for Q, in which equation the variable u enters as a sort of parametric function that is 
required to satisfy the PDE F[u]=0.  

      A recursion operator R̂  [10] is a linear operator which, acting on a symmetry 

characteristic Q, produces a new symmetry characteristic ˆQ RQ  . That is,  

 

  ˆ( ; ) 0 ( ; ) 0S RQ u when S Q u                                     (39) 

 
It is not too difficult to show that any power of a recursion operator also is a recursion 

operator. This means that, starting with any symmetry characteristic Q, one may in principle 
obtain an infinite set of characteristics (thus, an infinite number of symmetries) by repeated 
application of the recursion operator.  

      A new approach to recursion operators was suggested in the early 1990s [2,3] (see also 
[4-6]). According to this view, a recursion operator is an auto-BT for the linear PDE (38) 
expressing the symmetry condition of the problem; that is, a BT producing new solutions Q΄ of 
(38) from old ones, Q. Typically, this type of BT produces nonlocal symmetries, i.e., symmetry 
characteristics depending on integrals (rather than derivatives) of u.  

      As an example, consider the chiral field equation  
 

   
1 1[ ] ( ) ( ) 0x x t tF g g g g g                                           (40) 

 
(as usual, subscripts denote partial differentiations) where g is a GL(n,C)-valued function of x 

and t (i.e., an invertible complex nn matrix, differentiable for all x, t).  
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      Let Q[g] be a symmetry characteristic of the PDE (40). It is convenient to put  
 

Q [g] = g Φ[g] 
 
and write the corresponding infinitesimal symmetry transformation in the form  
 

    [ ]g g g g g g                                                (41) 

 
The symmetry condition that Q must satisfy will be a PDE linear in Q, thus in Φ also. As can 

be shown [4], this PDE is  
 

  
1 1( ; ) [ , ] [ , ] 0xx tt x x t tS g g g g g                                (42) 

 

which must be valid when F[g]=0  (where, in general,  [A, B]  AB–BA  denotes the 
commutator of two matrices A and B).  

      For a given g satisfying F[g]=0, consider now the following system of PDEs for the matrix 
functions Φ and Φ΄:  

 

     

1

1

[ , ]

[ , ]

x t t

t x x

g g

g g





    

    
                                              (43) 

 

The integrability condition ( ) ( )x t t x
    , together with the equation F[g]=0, require that Φ be 

a solution of (42):  S (Φ ; g) = 0.  Similarly, by the integrability condition ( ) ( )t x x t    one finds, 

after a lengthy calculation:  S (Φ΄; g) = 0.  
      In conclusion, for any g satisfying the PDE (40), the system (43) is a BT relating solutions 

Φ and Φ΄ of the symmetry condition (42) of this PDE; that is, relating different symmetries of the 
chiral field equation (40). Thus, if a symmetry characteristic Q=gΦ of (40) is known, a new 
characteristic Q΄=gΦ΄ may be found by integrating the BT (43); the converse is also true. Since 
the BT (43) produces new symmetries from old ones, it may be regarded as a recursion 
operator for the PDE (40).  

      As an example, for any constant matrix M the choice Φ=M clearly satisfies the symmetry 
condition (42). This corresponds to the symmetry characteristic Q=gM. By integrating the BT 
(43) for Φ΄, we get Φ΄=[X, M] and Q΄=g[X, M], where X is the “potential” of the PDE (40), defined 
by the system of PDEs  

 
1 1,x t t xX g g X g g                                              (44) 

 
Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of the 

potential X. Indeed, as seen from (44), in order to find X one has to integrate the chiral field g 
with respect to the independent variables x and t. The above process can be continued 
indefinitely by repeated application of the recursion operator (43), leading to an infinite 
sequence of increasingly nonlocal symmetries.  
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7.  SUMMARY  

Classically, Bäcklund transformations (BTs) have been developed as a useful tool for finding 
solutions of nonlinear PDEs, given that these equations are usually hard to solve by direct 
methods. By means of examples we saw that, starting with even the most trivial solution of a 
PDE, one may produce a highly nontrivial solution of this (or another) PDE by integrating the BT, 
without solving the original, nonlinear PDE directly (which, in most cases, is a much harder task).  

 A different use of BTs, that was recently proposed [7,8], concerns predominantly the solution 
of linear systems of PDEs. This method relies on the existence of parameter-dependent 
solutions of the linear PDEs expressing the integrability conditions of the BT. This time it is the 
BT itself (rather than its associated integrability conditions) whose solutions are sought.  

An appropriate example for demonstrating this approach to the concept of a BT is furnished 
by the Maxwell equations of electromagnetism. We showed that this system of PDEs can be 
treated as a BT whose integrability conditions are the wave equations for the electric and the 
magnetic field. These wave equations have known, parameter-dependent solutions – 
monochromatic plane waves – with arbitrary amplitudes, frequencies and wave vectors playing 
the roles of the “parameters”. By substituting these solutions into the BT, one may determine the 
required relations among the parameters in order that these plane waves also represent 
electromagnetic fields (i.e., in order that they be solutions of the Maxwell system). The results 
arrived at by this method are, of course, well known in advanced electrodynamics. The process 
of deriving them, however, is seen here in a new light by employing the concept of a BT.  

BTs have also proven useful as recursion operators for deriving infinite sets of nonlocal 
symmetries and conservation laws of PDEs [2-6] (see also [11] and the references therein). 
Specifically, the BT produces an increasingly nonlocal sequence of symmetry characteristics, 
i.e., solutions of the linear equation expressing the symmetry condition (or “linearization”) of a 
given PDE.  

An interesting conclusion is that the concept of a BT, which has been proven useful for 
integrating nonlinear PDEs, may also have important applications in linear problems. Research 
on these matters is in progress.  
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Abstract. The dispersion of carbon nanotubes (CNTs) in a typical epoxy resin was 
monitored on line via the employment of impedance spectroscopy. The use of interdigital 
sensors has the advantage for in situ process monitoring during the dispersion process 
which is significant for the effective use of CNTs in modern technological products such as 
those used in marine applications.  Monitoring the dispersion process ensures high quality 
of products and facilitates optimal material selection in the product formulation. The real 
and imaginary parts of the impedance were recorded during frequency scans at regular 
intervals in the course of the sonication of the mixture. The equivalent circuit analysis of 
the sensor signal assisted in the detection of the gradual progress of the process and also 
the indication of time of completion.  

Keywords: carbon nanotubes, dispersion, impedance spectroscopy, interdigital 
sensors, equivalent circuit analysis 

PACS:   82.35.Np Nanoparticles in polymers, 82.70.-y Disperse systems; complex 
fluid, 62.23.Pq Composites (nanosystems embedded in a larger structure), 61.46.Fg 
Nanotubes 

INTRODUCTION 

Carbon Nanotubes (CNTs) were found to improve electrical, thermal and mechanical 
properties of polymer matrices when they used as fillers, similar to Carbon Black (CB) particles 
with the advantage that for building up the conductive percolation network, much lower weight 
content of CNTs is needed [1]. For the application of using CNTs in the matrix of smart tooling, 
the electrical as well as thermal properties enhancement is considered. In order to obtain 
conductive polymer/CNT composites, the CNTs are incorporated into the polymer matrix, where 
they form a three dimensional conductive network above a critical volume called the percolation 
threshold (pc) [2] inversely dependent on the aspect ratio (the ratio of the long dimension over 
the short dimension) of the inclusions. Therefore, the high aspect ratio of CNTs provides 
conductive carbon fibre reinforced polymers (CFRPs) with the inclusion of low filler 
concentration [3, 4]. 
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The first major step of CNT reinforced CFRPs production depends on the homogeneous 
dispersion of the CNTs in the polymer matrix. Therefore depending on the desirable target 
properties, the processing parameters like the viscosity of the matrix, the size and geometry of 
the particles and the machine parameters like rotation speed, mixing time and temperature, the 
optimum filler content and manufacturing process can vary for each filler-matrix combination. 
One basic challenge consists in finding the best technology for the energy input to disperse the 
fibres without damaging them and the epoxy matrix. There are significant challenges and 
peculiarities when dispersing CNTs in thermoset resin systems. 

On the other hand the CNT-reinforced resin systems are used as matrix material in CFRPs. 
This is usually achieved by prepregging, Resin Transfer Moulding (RTM), wet laminating or 
autoclave technologies. Critical parameters are amongst others the viscosity of the matrix, the 
dispersion quality and the particle size. 

Dispersion and percolation behaviour depend on many factors. Shape and size of the 
dispersed particles, shear rate, viscosity and chemical functionalization; all of these parameters 
influence the dispersion result. However, once dispersed, the system is not in the state of 
equilibrium. The particles dispersed in a viscous material are subject to Brownian motion and 
hydrodynamic forces and the particles interact due to different attractive and repulsive forces. 

While curing the epoxy/CNT composites, two processes counteract each other. Viscosity 
decreases with increasing temperature but once the curing reaction is initiated, cross-linking 
between the molecules will result progressively increment in viscosity with time. This leads to an 
accelerated re-agglomeration. It is well known that carbon nanotubes re-agglomerate during the 
curing process. There are methods to achieve a stable dispersion, either by modifying the 
potential curve or by stabilising the suspension via the existence of a potential barrier. 

All the above demonstrate the significance for nanotube-reinforced polymers of the effective 
dispersion of the CNTs in the matrix system. Nano-scaled particles exhibit an enormous surface 
area (more than 1000 m2/g), which is several orders of magnitude larger than the surface of 
conventional fillers. This surface area acts as interface for a stress transfer, but is also 
responsible for the strong tendency of the CNTs to form agglomerates. An efficient exploitation 
of the CNT properties in polymers is therefore related to their homogeneous dispersion in the 
matrix or an exfoliation of the agglomerates and a good wetting with the polymer. 

The precise characterisation of the dispersion quality is a complex issue. There are different, 
partly multistage procedures, interpreting the results of specific testing methods. The validation 
does not generate absolute values but has a relative, describing character. Low resolution 
analysis can be used to search for significant agglomerates inside a bigger area, while high 
resolution methods are able to evidence (or not) the existence of single dispersed CNTs. 

METHODOLOGY 

Dielectric analysis, or dielectrometry, is a technique that can be used to investigate the 
processing characteristics and chemical structure of polymers and other organic materials by 
measuring their dielectric properties. Dielectric measurements are usually implemented as an 
electrical admittance measurement. This measurement can be accomplished by placing a 
sample of the material of interest between two electrically conducting plates (electrodes), 
applying a time-varying voltage, v(t), between the two electrodes and measuring the resulting 
time-varying current, i(t) [5,6]. 

Impedance spectroscopy coupled with equivalent circuit modelling can be used in order to 
investigate the on-line monitoring of thermoset cure [7]. One limitation of using equivalent 
circuits is the non-uniqueness of the model because the material response can be represented 
by a variety of combinations of electrical components. Recent work has shown that when the 
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addition of CNTs induces a conductive response, impedance generally increases as 
crosslinking advances [8]. In the case of neat epoxy resin, this behaviour can be attributed to 
mobility limitations imposed on the charge carriers by the process of cure [9], while in the case 
where the epoxy matrix has been reinforced with SWNTs the frequency corresponding to the 
conductive mechanisms of the system increases with the process of cure [10]. 

Changes in a material's degree of electrical dipole alignment and/or its ion mobility can be 
used to infer information concerning its bulk material properties, such as its viscosity, rigidity, 
reaction rate, cure state, etc. Fundamental to the methodology of actually accomplishing 
dielectric (admittance) measurements is the critical assumption that the electrical response of 
the sample is linear and time-invariant [11]. 

A typical epoxy resin (Huntsman XU3508) was used for the dispersion of 0.1 %w/w multi-wall 
carbon nanotubes (MWCNTs) of more than 98% carbon basis, with outside diameter 6-13 nm 
and length 2.5-20 μm from Sigma-Aldrich. Impedance measurements were performed using an 
Advanced Dielectric Thermal Analysis System (DETA-SCOPE by ADVISE) and commercially 
available GIA microsensors supplied at the site of the CNT mixing. The amplitude of the 
excitation voltage applied to the sensors was 10 V. A sweep of 12 frequencies between 10 Hz 
and 100 kHz was made. A control thermocouple was placed inside the resin tank in order to 
measure the temperature during the frequency cycles. The commercial dielectric sensor used 
(GIA sensors, Pearson Panke) comprise an assembly of interdigital copper electrodes, printed at 
a spacing of 300 μm on a polymeric substrate film. The sensors were dipped into the resin/CNT 
dispersion and measurement were taken at regular intervals during the mixing process. 

DEVELOPMENT OF EQUIVALENT CIRCUIT MODEL 

The application of the flat interdigital sensors allows for the in-process monitoring of the 
dispersion of carbon nanotubes in the epoxy matrix, as the transformation from the parallel plate 
capacitor to coplanar electrodes. These electrodes create fringing electric field lines which 
interact with the material. In this way, measurements may be one or two sided allowing for easy, 
non invasive measurements in most systems (Figure 1). The distance between the electrodes is 
proportional to the penetration depth in the material. In this way, the choice of sensor defines the 
representative volume that is interrogated with the method. 

 
FIGURE 1. From the parallel to the coplanar capacitor configuration: the interdigital sensor and the 

resulting electric field. 

The impedance response of the mixture is dominated by the behaviour of the conductive 
loose aggregates of nanotubes and the resin-rich areas acting as interfaces among them. The 

dielectric response of typical epoxy systems depends on the complex dielectric permittivity * 
which involves contribution from both dipoles and ion mobility: 

 

 
***

ionicdipolar    (1) 
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When the electric field is interacting with the dielectric material, contributions from 
polarization of dipoles and ionic species take place at the vicinity of the capacitor plates or at 
randomly created interfaces in the material volume. Although the aforementioned contribution 
constitute an equivalent circuit where separate branches have to be accounted for in all distinct 
species, typically, in plain epoxy configurations the equivalent circuit is simplified, which directly 
relates to the resin viscosity and the degree of cure. In this case, the equivalent circuit is formed 
as a capacitor and a resistance in parallel (Figure 2), where the ionic contribution is 
characterized by the resistance R, and the mobility of the branches of the molecular network is 
represented by the capacitor C. 

 

FIGURE 2. Simplified equivalent circuit for a typical epoxy cure reaction 

In the case of the inclusion of the CNT phase, the equivalent circuit becomes more 
complicated. Previous works [12], [13] have revealed inductive contributions to electrical signal 
from the presence of CNT inclusions. In these studies a three branch circuit for the modelling of 
CNTs dispersion in the resin and of the curing process with the addition of hardener was used. 
The circuit representation was overall satisfactory for both mixing and curing of the resin, 
however an indication of the end of the dispersion process was not clearly observed. Therefore 
this circuit model needs to be improved. To this end, the three branch circuit of these studies 
[12], [13] is modified by shifting the branch corresponding to the contribution of the nanophase (a 
typical inertia element, i.e. a coil, and a resistance) to a new position in series to the other 
branches. In this way, it is believed that the equivalent circuit shown in Figure 3 has the inertia 
element (the inductance L) in a more prominent role to represent accurately the dispersion of the 
nanophase (movement and structural changes of the CNTs). At the same time, the resistance 
R2 should be directly related to the conductivity of the mixture as dispersion stops percolation 
effects.  

 

FIGURE 3: Equivalent circuit for the neat epoxy resin with CNT inclusions.  

 

ANALYSIS OF EXPERIMENTAL RESULTS 

The temperature changes during the dispersion process were measure with a control 
thermocouple and the results are shown in Figure 4. It is observed that temperature is increasing 
at the initial stages of the dispersion and after 60 min it stabilises around 35oC. 
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FIGURE 4. Values of T(t), the temperature T vs. dispersion time. 
 
The acquired impedance values during selected times at the course of CNT dispersion in the 

epoxy resin matrix were analysed and fitted to the circuit of Figure 3 by employing a complex 
non linear least square immitance fitting program developed by Ross Macdonald in 1999 and 
since then upgraded with additional features. The circuit of Figure 3 is adapted to standard circuit 
models embedded in the fitting software, where each circuit model consists of 40 elements. Out 
of the 40 parameters (P1, P2, …, P40) of the circuit model, only those related to the elements of 
the circuit of Figure 3 (P1, P6, P7, P8 and P9) are variable, while all others are fixed to 0. Further 
details of the fitting method and the fitting software tool are provided in [13]. The main interface 
of the fitting software with the key settings used for the data treatment is shown in Figure 5. 

 

 

FIGURE 5. User interface of the complex non-linear least square impedance fitting software for the 
analysis of the data obtained during CNT dispersion in epoxy resin matrix. 

A typical fitting involved loading the measurement data from the specific impedance 
spectrum (real and imaginary impedance vs. test frequency) and running the fitting software with 
the above described model and settings of parameters. The predicted values of real and 
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imaginary impedance (model = continuous line) was compared with the measurement data 
(points = measurements) to assess the fitness of the model, as shown in Figure 6.  

 

  

FIGURE 6. Comparison between data (points) and circuit model prediction (continuous line) for the real 
and imaginary impedance after the execution of the fitting routine. 

In the following description the values of the parameters of the equivalent circuit of Figure 3 
are presented and the significance of the changes during the dispersion process is discussed. 

 
 

 
(a) 

 
(b) 

 
FIGURE 7. Values of (a) C(t), capacitance vs. dispersion time and (b) R1(t), resistance vs. dispersion 

time. 

 
Figure 7 shows the values of the circuit elements in the branch representing the main 

relaxation and the charge separation in the material. There is a progressive change in the fitted 
values for both capacitance C and resistance R1. As far as the capacitance is concerned (Figure 
7a), there is an initial sharp increase at the start of the dispersion process, which is followed by a 
gradual drop in values up to 100 min in the process. At that time the capacitance value 
approaches the order of magnitude of capacitance in air showing that there are no significant 
relaxation processes in the signal any more. This levelling signifies the stability of the dispersion 
and an indication of the completion of the process. It is worth mentioning the high values of 
capacitance at the start of the process, which implies that the particular material structure at this 
stage is suitable for the development of energy storage devices. A potential freeze of the 
nanostructure at the specific formation would lead to an efficient capacity in charges separation. 
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As far as the resistance R1 is concerned (Figure 7b), the plot demonstrates similar gradual 
change, which is an increase for this element up to 100 min in the process. The starting value is 

around 10 k, a low figure, as a result of low apparent viscosity of the resin under the initial 
conditions of the dispersion process (presence of few but large agglomerates of CNTs). As the 
dispersion proceeds, the agglomerates are breaking and the apparent viscosity increases 
causing the rise in resistance. The final level of the element R1 (corresponding to the resin 

component) in the order of G indicates the reduced mobility of ions in the resin system. The 
time of levelling off is identical for both capacitance and resistance circuit elements.  

 
(a) 

 
(b) 

 
FIGURE 8. Values of (a) R2(t), resistance vs. time and (b) L(t), inductance vs. time. 

 
Figure 8 shows the values of the circuit elements in the branch representing the conductive 

and inductive behaviour of the CNT structure within the liquid resin. There is a progressive 
change in the fitted values for both resistance R2 and inductance L. As far as the resistance is 
concerned (Figure 8a), there is an initial sharp increase at the start of the dispersion process, 
which is followed by a gradual increase in values. The final level is reached at 100 min in the 
process, but a disturbance in the behaviour is observed when the final level is reached. The 
disturbance has the form of very low values for a period of 20 min. The above changes are 
explained by the dispersion procedure, which breaks the nanoparticles agglomerates into 
smaller entities, thus increasing the length of conductive paths in the system. An effective 
dispersion process is expected to result in a significant increase of this resistive component. The 
increase in resistance is around four orders of magnitude. As far as the observed disturbance in 
resistance is concerned, this can be attributed to the occurrence of a ‘conductive spike’ in the 
system observed only at the CNT components of the circuit model. 

As far as the inductance L is concerned (Figure 8b), the plot demonstrates also a sharp 
increase at the start of the process and then a gradual drop towards the final level at 100 min in 
the process. The starting value is around 100 MH and the final level is at 1 TH. As the dispersion 
proceeds, the agglomerates are breaking, the average distance between individual CNTs is 
increasing and the inductive effect is also increasing. A similar disturbance is observed in 
inductance. 

The above description shows clearly how dielectric measurements in the dispersion process 
can be used to detect the main stages of the process and indicate its completion. 
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CONCLUSIONS 

The dispersion of carbon nanotubes (CNTs) in a typical epoxy resin was monitored on line 
via the employment of impedance spectroscopy. The system used interdigital sensors which 
allowed for in situ process monitoring during the dispersion process. The sensors were 
immersed in the epoxy/carbon nanotubes system which was subjected to dispersion. The real 
and imaginary parts of the impedance were recorded during frequency scans at regular intervals 
in the course of the sonication of the mixture. The equivalent circuit analysis of the sensor signal 
assisted in the detection of the gradual progress of the process and also the indication of time of 
completion.  

The dispersion process is significant for the effective use of CNTs in modern technological 
products, such as those used in marine applications. Currently nanotechnology products are 
used for surface protection of principal structures, such as hulls, and also effective coating for 
the prevention of algae growth in submerged surfaces. The preparation of these products 
involves dispersion of CNT structures in the carrying liquid. Monitoring the dispersion process 
ensures high quality of products and facilitates optimal material selection in the product 
formulation. 
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