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Abstract.  The concept of electromotive force (emf) may be introduced in various ways in 

an undergraduate course of theoretical electromagnetism. The multitude of alternate 
expressions for the emf is often the source of confusion to the student. We summarize the 
main ideas, adopting a pedagogical logic that proceeds from the general to the specific. 
The emf of a “circuit” is first defined in the most general terms. The expressions for the 
emf of some familiar electrodynamical systems are then derived in a rather straightforward 
manner. A diversity of physical situations is thus unified within a common theoretical 
framework.  

1.  INTRODUCTION 

The difficulty in writing this article was not just due to the subject itself: we had to first 
overcome some almost irreconcilable differences in educational philosophy between an 
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer. 
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.  

Having taught intermediate-level electrodynamics courses for several years, we have come 
to realize that, in the minds of many of our students, the concept of electromotive force (emf ) is 
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC 
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the 
electric field along a closed path? And what if a magnetic rather than an electric field is present?  

Generally speaking, the problem with the emf lies in the diversity of situations where this 
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is 
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the 
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas, 
choosing a pedagogical approach that proceeds from the general to the specific. We begin by 
defining the concept of emf of a “circuit” in the most general way possible. We then apply this 
definition to certain electrodynamic systems in order to recover familiar expressions for the emf. 
The main advantage of this approach is that a number of different physical situations are treated 
in a unified way within a common theoretical framework.  

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5) 
application is made to particular cases, such as motional emf, the emf due to a time-varying 
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6, 
the connection between the emf and Ohm’s law is discussed.  
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2.  THE GENERAL DEFINITION OF EMF 

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general 
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the 
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or 

any other elements whose presence may contribute to the e/m field).  
We arbitrarily assign a positive direction of traversing the loop C, and we consider an element 

dl  of C oriented in the positive direction. Imagine now a test charge q located at the position of 

dl , and let F  be the force on q at time t :  

 

                                               

dl


C



q

F

      
 
This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources 

(e.g., batteries) that can interact electrically with q. The force per unit charge at the position of 

dl  at time t, is  

 

                   
F

f
q

                                                                 (1) 

 

Note that f  is independent of q, since the force by the e/m field and/or the sources on q is 

proportional to the charge. In particular, reversing the sign of q will have no effect on f  

(although it will change the direction of F ).  
      We now define the electromotive force (emf ) of the circuit C at time t as the line integral 

of f  along C, taken in the positive sense of C :  

 

                            
C

f dl                                                              (2) 

 
Note that the sign of the emf is dependent upon our choice of the positive direction of 

circulation of C: by changing this convention, the sign of  is reversed.  

We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial 

observers since at this limit the force F  is invariant under a change of frame of reference.  
In the following sections we apply the defining equation (2) to a number of specific 

electrodynamic situations that are certainly familiar to the student.  
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3.  MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC 
FIELD 

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic 

field ( )B r . Let   be the velocity of the element dl  of C relative to our inertial frame of 

reference. A charge q (say, a free electron) at the location of dl  executes a composite motion, 

due to the motion of the loop C itself relative to our frame, as well as the motion of q along C. 

The total velocity of q relative to us is tot    , where   is the velocity of q in a direction 

parallel to dl . The force from the magnetic field on q is  

 

                               

( ) ( ) ( )

( ) ( )

totF q B q B q B

F
f B B

q

  

 

      

    
           

 
By (2), then, the emf of the circuit C is  
 

                            ( ) ( )
C C C

f dl B dl B dl                

 

But, since   is parallel to dl , we have that ( ) 0B dl   . Thus, finally,  

 

            ( )
C

B dl                                                           (3) 

 
Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note 

also that the velocity   may vary around the circuit.  

      By using (3), it can be proven (see Appendix) that  
 

       
d

dt


                                                                  (4) 

 

where B da   is the magnetic flux through the wire C at time t. Note carefully that (4) 

does not express any novel physical law: it is simply a direct consequence of the definition of 
the emf !  

4.  EMF DUE TO A TIME-VARYING MAGNETIC FIELD 

Consider now a closed wire C that is at rest inside a time-varying magnetic field ( , )B r t . As 

experiments show, as soon as B  starts changing, a current begins to flow in the wire. This 
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And, 
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed 

experimentally that, if the magnetic field B  stops varying in time, the current in the wire 
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disappears. The only field that can put an initially stationary charge in motion and keep this 
charge moving is an electric field.  

      We are thus compelled to conclude that a time-varying magnetic field is necessarily 
accompanied by an electric field. (It is often said that “a changing magnetic field induces an 
electric field”. This is somewhat misleading since it gives the impression that the “source” of an 
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of 
any e/m field are the electric charges and the electric currents!)  

      So, let ( , )E r t  be the electric field accompanying the time-varying magnetic field B . 

Consider again a charge q at the position of the element dl  of the wire. Given that the wire is 

now at rest (relative to our inertial frame), the velocity of q will be due to the motion of the 

charge along the wire only, i.e., in a direction parallel to dl : tot   (since 0  ). The force on 

q by the e/m field is  
 

                             

[ ( )] [ ( )]

( )

totF q E B q E B

F
f E B

q

 



      

   
      

 
The emf of the circuit C is now  
 

                               ( )
C C C

f dl E dl B dl                

 

But, as explained earlier, ( ) 0B dl   . Thus, finally,  

 

          
C

dl                                                                 (5) 

 
      Equation (4) is still valid. This time, however, it is not merely a mathematical 

consequence of the definition of the emf ; rather, it is a true physical law deduced from 
experiment! Let us examine it in some detail.  

      In a region of space where a time-varying e/m field ( , )E B  exists, consider an arbitrary 

open surface S bounded by the closed curve C :  
 

                                                               

S

C

da

da

dl

     
 

(The relative direction of dl  and the surface element da , normal to S, is determined 

according to the familiar right-hand rule.) The loop C is assumed stationary relative to the inertial 
observer; hence the emf along C at time t is given by (5). The magnetic flux through S at this 
instant is  
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                                                  ( )m
S

t B da           

 

(Note that the signs of  and Φm depend on the chosen positive direction of C.) Since the field 

B  is solenoidal, the value of Φm for a given C is independent of the choice of the surface S. 
That is, the same magnetic flux will go through any open surface bounded by the closed curve 
C.  

      According to the Faraday-Henry law,  
 

                md

d t


                                                                         (6) 

or explicitly,  
 

  
C S

d
E dl B da

dt
                                                               (7) 

 
(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)  
      Equation (7) can be re-expressed in differential form by using Stokes’ theorem,  
 

                                           ( )
C S

E dl E da                 

 
and by taking into account that the surface S may be arbitrarily chosen. The result is  

 

B
E

t


  


                                                                (8) 

 

We note that if / 0B t   , then necessarily 0E  . Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B  is static (

/ 0B t   ), then E  is irrotational: 0 0E E dl     , which allows for the possibility 

that 0E  .  

      Corollary:  The emf around a fixed loop C inside a static e/m field  ( ), ( )E r B r  is   = 0  

(the student should explain this).  

5.  EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR 

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance) 
connected to an external resistor. As shown below, the emf of the circuit in the direction of the 
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the 
work per unit charge done by the source (battery).  
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
_

a b

I

I

0f

E

                 
 
      We recall that, in general, the emf of a circuit C at time t is equal to the integral  
 

                                                       
C

f dl                         

 

where /f F q  is the force per unit charge at the location of the element dl  of the circuit, at 

time t. In essence, we assume that in every element dl  we have placed a test charge q (this 

could be, e.g., a free electron of the conducting part of the circuit). The force F  on each q is 
then measured simultaneously for all charges at time t. Since here we are dealing with a static 

(time-independent) situation, however, we can treat the problem somewhat differently: The 

measurements of the forces F  on the charges q need not be made at the same instant, given 
that nothing changes with time, anyway. So, instead of placing several charges q around the 

circuit and measuring the forces F  on each of them at a particular instant, we imagine a single 
charge q making a complete tour around the loop C. We may assume, e.g., that the charge q is 
one of the (conventionally positive) free electrons taking part in the constant current Ι flowing in 

the circuit. We then measure the force F  on q at each point of C.  
      We thus assume that q is a positive charge moving in the direction of the current Ι. We 

also assume that the direction of circulation of C is the same as the direction of the current 

(counterclockwise in the figure). During its motion, q is subject to two forces: (1) the force 
0F  by 

the source (battery) that carries q from the negative pole a to the positive pole b through the 

source, and (2) the electrostatic force 
eF qE  due to the electrostatic field E  at each point of 

the circuit C (both inside and outside the source). The total force on q is  
    

                        
0

0 0 0e

F F
F F F F qE f E f E

q q
                

Then,  
 

    
0 0

C C C C
f dl f dl E dl f dl                                              (9) 

 

since 0
C

E dl   for an electrostatic field. However, the action of the source on q is limited to 

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence, 

0 0f   outside the source, so that (9) reduces to  
 

  
0

b

a
f dl                                                                 (10) 
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Now, since the current Ι is constant, the charge q moves at constant speed along the circuit. 
This means that the total force on q in the direction of the path C is zero. In the interior of the 

resistor, the electrostatic force 
eF qE  is counterbalanced by the force on q due to the 

collisions of the charge with the positive ions of the metal (this latter force does not contribute to 
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however, 

where there is no resistance, the electrostatic force 
eF  must be counterbalanced by the 

opposing force 
0F  exerted by the source. Thus, in the section of the circuit between a and b,  

 

                     0 0 00 0e

F
F F F f f E f E

q
                    

 
Equation (10) then takes the final form,  
 

  
b

b a
a

E dl V V V                                                           (11) 

 
where Va and Vb are the electrostatic potentials at a and b, respectively. This is, of course, 

what every student knows from elementary e/m courses!  
      The work done by the source on q upon transferring the charge from a to b is  
 

       
0 0

b b

a a
W F dl q f dl q                                                     (12) 

 

[where we have used (10)]. So, the work of the source per unit charge is W/q=  . This work is 

converted into heat in the resistor, so that the source must again supply energy in order to carry 
the charges once more from a to b. This is something like the torture of Sisyphus in Greek 
mythology!  

6.  EMF AND OHM’S LAW 

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery) 
and may also be in motion relative to our inertial frame of reference. Let q be a test charge at 

the location of the element dl  of C, and let F  be the total force on q (due to the e/m field 

and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-

independent quantity.) The force per unit charge at the location of dl  at time t, then, is 

/f F q . According to our general definition, the emf of the circuit at time t is  

 

         
C

f dl                                                        (13) 

 
Now, if σ is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p. 

285 of [1]) we have:  
 

            J f                                                            (14) 
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where J  is the volume current density at the location of dl  at time t. (Note that the more 

common expression J E , found in most textbooks, is a special case of the above formula. 

Note also that J  is measured relative to the wire, thus is the same for all inertial observers.) By 

combining (13) and (14) we get:  
 

          
1

C
J dl


                                                      (15) 

 

Taking into account that J  is in the direction of dl  at each point of C, we write:  

 

                                               
I

J dl J dl dl
S

        

 
where S is the constant cross-sectional area of the wire. If we make the additional assumption 
that, at each instant t, the current I is constant around the circuit (although I may vary with time), 

we finally get:  
 

           
l l

I I I R
S S




                                                   (16) 

 
where l is the total length of the wire,  ρ=1/σ  is the resistivity of the material, and R is the total 

resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.  
      As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery 

with internal resistance r. Let R0 be the external resistance connected to the battery. The total 
resistance of the circuit is R=R0+r. As before, we call V=Vb –Va the potential difference between 

the terminals of the battery, which is equal to the voltage across the external resistor. Hence, 
V=IR0 , where I is the current in the circuit. The emf of the circuit (in the direction of the current) 
is  

 

                                           = I R = I (R0 + r) = V + I r    

 
Note that the potential difference V  between the terminals a and b equals the emf only when 

no current is flowing (I= 0) .  
      As another example, consider a circuit C containing an ideal battery of voltage V and 

having total resistance R and total inductance L :  

                                 

V

R
L

I
 

 
In this case, the emf of C in the direction of the current flow is  
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                                     (t) ( )L

dI
V V V L I t R

dt
                

 
To understand why the total emf of the circuit is V +VL , we think as follows: On its tour around 

the circuit, a test charge q is subject to two forces (ignoring collisions with the positive ions in the 
interior of the wire): a force inside the source, and a force by the non-conservative electric field 
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the 
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry 
law (6). The latter emf is precisely VL ; it has a nonzero value for as long as the current I is 

changing.  
Some interesting energy considerations are here in order. The total power supplied to the 

circuit by the battery at time t is  
 

                                         
2 d I

P I V I R L I
dt

                                    

 
The term  I

 2R  represents the power irreversibly lost as heat in the resistor (energy, per unit 
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to 
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the 
source in order to maintain the current against dissipative losses in the resistor. On the other 
hand, the term  LI (dI/dt)  represents the energy per unit time required to build up the current 
against the “back emf ” VL . This energy is retrievable and is given back to the source when the 
current decreases. It may also be interpreted as energy per unit time required in order to 
establish the magnetic field associated with the current. This energy is “stored” in the magnetic 

field surrounding the circuit.  

7.  CONCLUDING REMARKS 

In concluding this article, let us highlight a few points of importance:  
1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”) 

in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain 
sources such as batteries.  

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of 
reference with respect to which it is measured.  

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence 
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present, 
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).  

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of 
the battery and represents work per unit charge done by the source.  

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s 
law can be expressed in terms of the emf by equation (16).  
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APPENDIX 

Here is an analytical proof of equation (4) of Sec.3:  
Assume that, at time t, the wire describes a closed curve C that is the boundary of a plane 

surface S. At time t΄= t+dt, the wire (which has moved in the meanwhile) describes another 

curve C΄ that encloses a surface S΄. Let dl  be an element of C in the direction of circulation of 

the curve, and let   be the velocity of this element relative to an inertial observer (the velocity 

of the elements of C may vary along the curve):  

                        



dl
dl

S

S

S Sda

da

da da

dt

C

C C

C
      

The direction of the surface elements da  and da  is consistent with the chosen direction of 

dl , according to the right-hand rule. The element of the side (“cylindrical”) surface S΄΄ formed 

by the motion of C, is equal to  
 

                                       ( ) ( )da dl dt dl dt           

 
Since the magnetic field is static, we can view the situation in a somewhat different way: 

Rather than assuming that the curve C moves within the time interval dt so that its points 
coincide with the points of the curve C΄ at time t΄, we consider two constant curves C and C΄ at 

the same instant t. In the case of a static field B , the magnetic flux through C΄ at time t΄= t+dt 

(according to our original assumption of a moving curve) is the same as the flux through this 
same curve at time t, given that no change of the magnetic field occurs within the time interval 

dt. Now, we note that the open surfaces S1=S and S2= S΄  S΄΄ share a common boundary, 
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux Φm passes 
through S1 and S2 at time t. That is,  

 

                  
1 2

1 2
S S S S΄ S΄΄

B da B da B da B da B da                     

 
But, returning to our initial assumption of a moving curve, we note that  
 

        ( )m
S
B da t   magnetic flux through the wire at time t    

 
and  
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   ( )m
S΄

B da t dt     magnetic flux through the wire at time t+dt    

 
Hence,  
 

            

( ) ( )

( ) ( ) ( )

( ) ( )

m m
S΄΄

m m m
S΄΄ C

m

C C

t t dt B da

d t dt t B da dt B dl

d
B dl B dl

dt

 

   


 

    

          

       



 

 

 

 
in accordance with (3) and (4).  
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Abstract. We study both the symmetric and asymmetric one-dimensional double    barrier 

potential which describes the band profile of a quantum tunneling diode in    the absence 
or the application respectively, of a constant electrical field. The     semiclassical path 
integral theory is employed to determine the transmission amplitude, which is the Green’s 
function for a single charge transport. The Green’s function is given in an analytical form 
and some attributes of the transmission amplitude due to resonant tunneling are 
established while it is shown to exhibit maxima at the position of the resonant states. The 
complex spectrum of the heterostructure is revealed and the time scale for charge 
transport is given, both in an analytical form. 

Keywords: double barrier structure, resonant tunneling diode, quasi bound states, 
Green’s function, transmission amplitude, charge transport, transport time 

PACS: 03.65.Sq, 03.65.Xp, 05.60.Gg, 72.10.Bg, 72.23.Hk 

INTRODUCTION 

Quantum transmission in nanostructures is in general dominated by the tunneling 
phenomenon. This term describes a particle transport through a classically forbidden region of 
motion, (barrier), meaning a region in which the potential energy exceeds the total particle 
energy. There is no classical analogue, since in classical mechanics the particle is totally 
reflected at the so called classical turning points, that is, points where the total energy equals 
the potential energy, and therefore no transmission ever occurs. The quantum mechanical 
wavefunction instead, does not vanish inside and after the barrier. Thus, according to the laws 
of quantum mechanics a particle incident on a potential barrier has a finite probability of 
appearing on the other side. 

Tunneling in solids was first studied by Fowler and Nordheim [1] in the thermionic emission of 
electrons from metal into vacuum. Later, interest was taken in the study of tunneling through thin 
insulating layers, separating two metals, or a metal and a semiconductor. Zener [2] introduced 
the interband tunneling, describing electrons that tunnel from one energy band to another 
through the forbidden energy gap. The outstanding  breakthroughs in the area of semiconductor 
device technology that followed, made possible the experimental observation of  Zener  
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tunneling  in p-n junction diodes. For example, Esaki [3] introduced the so-called Esaki diode, in 
which the interband Zener tunneling, produces negative differential resistance in the I-V 
characteristics.  

  In most artificially engineered structures, quantum confinement may seriously reduce the 
dimensions of the system under study. Such confinement is usually caused by a heterojunction, 
(MOSFET), or simply a semiconductor- air interface, (quantum wire). For example if one thin 
layer of material is grown on top of another, such as the simple AlGaAs/GaAS heterostructure, 
the change in potential is in only the vertical growth direction, and therefore the problem 
practically becomes one dimensional. The ability of constructing well controlled heterostructure 
layers enabled Tsu and Esaki to predict at first and observe shortly after [4,5], that when bias is 
applied across a double barrier heterostructure we get similar to the Esaki diode current voltage 
characteristics. However in this case it is the resonant tunneling, which is tunneling through the 
barriers within the same band, that is responsible for the I/V characteristics, and not the 
interband tunneling. Resonant tunneling refers to the case where the transmission amplitude, 
which is the Green’s function for electron propagation through the heterostructure, is sharply 
peaked about certain complex values of the energy. In fact the real parts of the above 
mentioned complex values are very close to these of the bound states associated with the 
quantum well formed between the two confining barriers.  The resonant energies of such a 
heterostructure support a complex spectrum, due to the fact that the electron may escape away 
from the quantum well in either direction. Thus, there is a finite lifetime associated with the 
bound state. This is why these states are known as quasi-bound states. The Green’s function 
for the lowest resonant energy may approach unity in some cases and so semiclassical 
methods can be applied with high accuracy.   

 In our days the numerical calculation of the Green’s function, for systems consisting of 
heterostructures, can be done with a relative ease, with the aid of modern computers. However, 
an analytical solution is always desirable and of an instructive value.  For example the analytic 
solution provides a direct comparison between the properties of different systems, even coming 
from different branches of science, as long as they can be described by the same type of 
potential function. In addition the application of the path integral analytic formalism seems to 
lack of any previous experience on these systems. Thus, our work was motivated by the need of 
fulfilling both the above requirements.  

The purpose of this paper is to describe and further produce analytic relations for a double 
barrier heterostructure, via an analytic path integral formalism. Doing so we first demonstrate 
the importance of the double barrier structure through its close resemblance to the structure of a 
resonant tunneling diode. We present a widely used structure which consists of two AlGaAs 
barriers, (speaking more accurately we should write AlxGa1-xAs where x~0,3), separated by a 
thin GaAs quantum well, surrounded by heavily doped GaAs layers. Then the semiclassical path 
integral approach is developed and the transmission amplitude for electron transport through the 
heterostructure is analytically calculated. We also produce analytic relations for the complex 
energy spectrum supported by the double barrier structure, as well as for the time needed for 
charge transport.   

2. THE DOUBLE BARRIER POTENTIAL AS A RESONANT TUNNELING 
DIODE 

     We consider the potential of figure 1 that follows. Potentials with such a form constitute 
models for resonant tunneling diodes and tunneling processes in various systems of physics 
and chemistry. As shown in figure 1, points  ε and ζ correspond to the maximum of the barriers 
which they do not need to be symmetric. There are four turning points: at α and β (finite barrier, 
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tunnelling is allowed) and at γ and δ, (again finite barrier, tunnelling is allowed), while β and γ 
also define the limits of the classically allowed region of motion.  

 

 

             
 

FIGURE 1: The double barrier potential V(z) that couples a quantum well to the continuum via two 
channels. 

 

     The topology of the above potential, meaning the specific permutation of classi-cally 
allowed and forbidden regions of motion, is the same with the one of the effective potential 
(band profile) of a resonant tunneling diode as this is pictured in figure 2 that follows. The barrier 
height is due to the conduction band offset, ΔΕc, while Ef   refers to the Fermi energy of the 
heavily doped GaAs layers and Eo refers to the lowest resonant energy or quasibound state of 
the GaAs quantum well. The thickness of the AlGaAS barriers is such that allows tunneling to be 
significant.   

 
FIGURE 2: Effective potential or band profile of a resonant tunneling diode structure. 

 

When a positive bias V is applied to the right contact relative to the left, the Fermi energy on 
the left is raised to the resonant energy Eo and a large current flows from left to right due to the 
maximization of the transmission amplitude. Opposite charge flow is strongly suppressed, since 
the carriers at the Fermi energy on the right, feel a large potential barrier, as shown in figure 3 
that follows: 
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FIGURE 3: Effective potential or band profile for a resonant tunneling diode structure when a positive 

bias is applied to the right contact. 

      

However, if we further increase the applied bias, the bottom of the conduction band of the left 
contact is raised to the resonant energy Eo, and therefore they will not remain anymore available 

electrons for tunneling. This is why the current is decreased with increasing bias, which results 
in a region of negative differential resistance in the I/V characteristics. Comparing figures 2 and 
3 it is readily seen that the application of a bias destroys the symmetry between the two 
potential barriers.  

 During the last decades, there has been a considerable volume of research into resonant 
tunneling diodes. Besides the fundamental physics included into this simple structure, interest 
also stems from the various applications in microwave systems and digital logic circuits. In these 
systems we may be interested in the fundamental time associated with the tunneling process, 
which is often taken as the lifetime of the quasi – bound state. Besides this time constant, we 
should also have in mind the RC time constant due to the capacitance of the structure and the 
transit time across the nontunneling regions of the device as well. However, when the device is 
properly designed these two time constants can be minimized. According to the literature the 
transfer- matrix method based on the discretized form of the one dimensional Schrödinger 
equation, seems to be the most popular for analyzing the double barrier structure, see [6-11] 
and references therein.  However our approach will be different, following the semiclassical path 
integral method which does not involve the Schrödinger equation at all. 

3. THE SEMICLASSICAL PATH INTEGRAL APPROACH 

The path integral construction of a system’s Green’s function for one dimensional 
propagation between two points z1 and z2 , is accomplished by taking account of all possible 

changes in phase of the wavefunction. These may be due to motion inside allowed and 
forbidden region or due to reflection from turning points. Miller [12] developed a semiclassical 
periodic orbit theory, based on Gutzwiiller’s trace formula [13], in his pioneering work on the 
application of path integrals to tunneling. This work inspired many others to improve his method 
and analytically solve interesting one dimensional problems.  

Among those,  Holstein and Swift [14] and Holstein alone [15,16] showed how Gsc(E) , which 
is the semiclassical fixed energy transmission amplitude, can be used to achieve analytic 
continuation of the propagator to forbidden regions, and furthermore established its connection 
to propagation and to reflection. Holstein’s [15] central result for the calculation of the 
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transmission amplitude via an infinite set of paths that the particle follows, connecting the initial  
point z1 to the final point z2, can be written in compact form as 

                                            
( )

11 2 1

1
( )  

( , )

N j

ij

ij

Gsc E a
p z z 





 
  

 
                                          (1) 

     In the above equation
1 2 ( , )p z z is a non local momentum of the particle defined by

* *

1 2 1 22 ( ) ( )( , ) k z k zp z z   where  *
( ) 2 ( )k z E V z   , with E standing for the energy and 

V(z) for the potential function, (atomic units employed throughout). In equation (1) each path is 
uniquely identified by an index, j, with j = 1,2,3,…..∞ , and is constructed by a set of  factors αij 

corresponding to propagation (from α to β ) in allowed regions (given by  
*
( )exp[ ]i k z dz

ike



  ), 

or in forbidden regions (given by 
*
( )exp z dz e










 
  
 

 where    *
( ) 2 ( )z V z E   ), and 

on the corresponding reflections from turning points (-i for reflection from a turning point in an 
allowed region ,    + i/2 for reflection in a forbidden region , and –1 for reflection from an infinite 

barrier). The product 

( )

1

N j

ij

i

a


  gives the unique amplitude for each possible path for going from z1 

to z2. For each path, j, N(j) is the number of possible factors 
ija present in this path. In the 

picture that follows we schematically give the rules for the propagation-reflection factors αij  that 

constitute the fundamental cells for constructing each individual path amplitude.  

 
FIGURE 4: Rules for the construction of the path integral amplitudes through the αij factors. The first 

motion is in a classically allowed region of motion, the second in a classically forbidden region and the 
third motion includes reflection from an infinite barrier. 

 

The above described method can also be found in standard textbooks of path integrals,  or 
quantum tunneling, [17,18]. 

It is readily seen that the calculation of the overall transmission amplitude depends on the 
topology of the potential function and on the nature of the turning points. Since there is an 
infinity of paths traversing both the allowed and the forbidden regions, it is very crucial to include 
all of them in the calculation by performing correct the rather complicated combinatorics. Then, 
and since each path repeats itself, the infinite class of paths can be summed to constitute 
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geometric progressions,  from which the analytic properties of Gsc(E) can be recognized 
directly. For the present requirement of computing the overall transmission amplitude, the points 
z1 and z2 lie on the heavily doped GaAs layers, on each free side of the two barriers, as shown 

in figure 1. 
When the potential is known explicitly, then Gsc(E) can be obtained analytically or 

numerically and its simple pole structure is revealed. Once Gsc(E) is known, its complex ‘self-
energy’ correction, namely the energy shift and width, can be extracted. This is possible by 

comparing the result representing the corresponding bound state problem for the inner quantum 
well (real energies) to the result for the resonance state problem (complex energies). As will be 
seen, Gsc(E) is a finite sum of complex poles, each representing a resonance state of the 
potential. The calculation leads naturally to the result that the pole of interest has a negative 
imaginary part, i.e. it corresponds to a decaying state, associated with the time needed for 
charge transport.   

4. TRANSMISSION AMPLITUDE AND COMPLEX ENERGY SPECTRUM 
OF A DOUBLE BARRIER STRUCTURE 

Considering the potential of figure 1, our objective is the calculation of the Greens function for 
propagation between points z1 and z2 via the semiclassical path integral theory. The calculation 
of Gsc(E) according to equation (1) entails the consideration of the phases of all possible paths, 
for the given total energy E. For each path, the overall phase is determined by the manner in 
which allowed and forbidden regions succeed one another, and by the nature of the 
corresponding turning points when reflection occurs. With respect to figure 1, the motion of the 
particle for E > 0 starts at (z1, t1) and ends at (z2, t2), at each side of the two  potential barriers. 
So there are five regions: O (allowed), I (forbidden), II (allowed), III(forbidden), IV(allowed) and 
motion in O and IV is free: once the particle moves from point α to the left or from point δ to the 
right, it cannot be reflected. In this way we are actually interested in the calculation of the 
amplitude for travelling from α at the beginning of region I, to δ at the end of region III in all 
possible ways.   

Since the sum over histories consists of calculating all possible paths connecting these 

points, we should spend a few lines explaining the symbolism that follows: for example 
IIIA   

means the amplitude for all the possible paths connecting γ and δ, while always staying inside 

region III , and  
 *I II

 


means the amplitude for all the possible paths connecting points α 

and γ by interchanging regions I and II , with the motion always ending inside region II , 
(where the asterisk goes). We can now proceed to the calculation by first dividing the problem 
up into smaller parts as follows: 

 
we reach point γ without ever passing through region III by interchanging only regions I and II 

in all possible ways. We call this contribution C1  

                                                   
 *

1C I II
 

 
                                                                  (2) 

Let us give a graphical presentation of a typical path of the above contribution C1, for the 
potential of figure 1. In all the graphs that follow the solid lines correspond to propagation in a 
classically allowed region of motion while the dash- dot lines correspond to propagation in a 
classically forbidden region of motion. Reflections are described by small curved lines and the 
succession of  lines moves downwards as time passes.  
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FIGURE 5: Graph representation of a typical path of contribution C1 for the potential of figure 1.  

Propagation starts at α and ends at γ. 

 

The above path is constituted by N(j)=12 propagation-reflection factors, and its contribution to 
the construction of the transmission amplitude is analytically given by the following time ordered 
product 
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    and j stands for 

the index of the path.                              
                                                                                                                                               

with γ as the starting point, we have the following alternatives: doing nothing, this is just a unity 
factor, or combine the three regions in all  possible ways by keeping as last interchange i) that of 
regions I and II, C2, or ii) that of regions III and II, C3 , getting respectively 
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and 
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It is obvious that each of the above contributions forms the infinite sum of the terms of a 

geometric progression, and so we can actually reduce the above sums to the following compact 
formulae 
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and  
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In fact we can also sum together C2 +1 and C3 to get 
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Let us again give a graphical presentation of a typical path of the above contribution C2,3, for 

the potential of figure 1.  

 
 

FIGURE 6: Graph representation of a typical path of contribution C2,3 for the potential of figure 1.  
Propagation starts at γ and ends at γ. 

 

 

 
 

FIGURE 7: Graph representation of a typical path of contribution C4 for the potential of figure 1. 

Propagation starts at γ and ends at δ. 
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The above path is constituted by N(j)=15 propagation-reflection factors, and its contribution to 
the construction of the transmission amplitude is analytically given by  the following time ordered 
product   

            
2 2 1 1 2 2 1 22 415 4( ) ( )

2 2 2 8

ik ik ik ik ik

j

i i i i
b e e e e e e i e i e e e e e e

              
                  (6) 

 

the last contribution involves only region III and no other, so it is simply the amplitude 

 

                                                                                   
4

IIIC A                                            (7) 

 

We give a last graphical presentation of a typical path of the contribution C4, for the potential 
of figure 1.  

 
The above path is constituted by N(j)=9 propagation-reflection factors, and its contribution to 

the construction of the transmission amplitude is analytically given by  the following time ordered 
product   
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We can now proceed to the calculation of the above contributions in terms of simpler 
amplitudes and transmission reflection factors. 
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Again we recognize the sum of a geometric progression and we can write the above 
expression in the closed form that follows 
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It is then straightforward to prove that the following relation also holds 
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We can now proceed to the combination of regions II and III and calculate the following 
contributions 
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  


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                        (12) 

 

where again it is straightforward to also calculate 
 

                                                       *

1

III II

III II

A A
III II
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     

   

  

 

 


                                             (13)
 

 

We now take in account of all of the above contributions by multiplying the factors C1 C2,3 and 
C4, since they correspond to statistically independent events, and get the final result 
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                  (14) 

 

In order to complete the above formula we should also include the initial propagation from z1 

to α which is simply the 
1

O

z aA 
 and the last propagation from δ to z2 which is the 

2

IV

zA
. In this 

way equation (1) of the Green’s function is written as follows 
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    

       


  

            (15) 

 

Since we have given the general expression of the Green’s function we can now discuss the 
type of symmetry between the two potential barriers. We should note that independently of the 

type of symmetry it is always true that II IIA A     , II IIA A      and II IIA A     . 

 

Symmetric barriers case: 
It is clear that if we are dealing with symmetric potential barriers then it is true that 

III IA A      and I IIIA A     .  The total path contribution from α to δ can then be written as 
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   
2 2

1
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sym
III II III II

A A A
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     
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
 

                               (16a) 

 

 

Let us define 1    and  III II III IIA A e A A d             . We then have 
 

                     
2

2
2

I II III I II III Ii
A A A A A A e e ie A d

i

  

             


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 
              (16b) 

where 

                                  
* *
( ) ( )exp expz dz z dze

 


 

 


 
  

     
   

                            (16c)  

 

 In this way the overall contribution can be written as 

                                         .

1 1I

symC ie A
e d e d



 

 
   

  
                                    (17) 

 In order to further construct analytic relations we should calculate the fundamental 
amplitudes that appear in the above formulae in terms of the transmission factors.  
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                                      (18a) 
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2
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
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
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                                 (18d) 

 
We can now proceed to the calculation the denominators of equation (17). We will have  
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                    (19) 
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We introduce the following two symbols, corresponding to the forbidden and the allowed 
region of motion respectively:  

 

                                 
2 2/ 4      and      ike e                                                         (20) 

 
and write the overall contribution as 
 

    
  

  

  

  
. 1/ 2 1/ 2
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1 1 2 2 1 1 2 2

I

symC ie A
i i



 

   

       


    
            

       (21) 

Direct remarks can be expressed concerning the structure of the above formulae:  

 

a)  It is obvious that when 1     which is equivalent to say that we have strong barriers 

confining the inner classically allowed region, and so practically no interaction with the 
continuum appears, we get 

 

                                            
 

 

 

 
.
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I
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
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                                   (22) 

 

b) It is easy to see that the condition 1 0   determines the eigenvalues of the classically 

allowed region of motion, since we can actually write 
2 / 2,       0,1,2,..ik ie e k n n        

which is the Bohr Sommerfield quantization rule. For example if the area of confinement is a 

harmonic potential of the form  
2 21

( )
2

U x x with turning points at α and –α, meaning 

2 21

2
   , k is equal to the quantity 2 2 1

2
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
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
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
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then the quantization rule gives   1/ 2
2

n
n

E
n E n

 
 


     , which is the harmonic 

oscillator spectrum. 
We may now investigate the effect of the previously revealed eigenvalues on the structure of 

the semiclassical Greens function.  
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       (23) 
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c) Next we can now investigate the case of maximum contribution which occurs by 

minimizing the denominators of 
.symC . We seek for a solution of the equation 

   1/ 2 1/ 21 1 2 2 0 (1 ) 2 (1 ) 0i i                 and we easily find 

 1/ 2

1~3,2~4( )  1 ,   i i    ,  where we have defined 
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0
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
. In this way we can actually 

write 
 

   
  

   
  

 
 

 
 

 

1/ 2 1/ 2 1/ 2 1/ 2

. 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 2 3 4

1/ 2 1/ 2

. 1/ 2 1/ 2

1 1

(1 ) (1 )

1

I

sym

I

sym

i i i i
C ie A

i i
C ie A

i i i i



 



 

     

         

 


   





      
    
      
 

  
    
    
 

(24) 

 
It is obvious that each pole term corresponds to odd and even eigenvalue contribution. It is 

therefore desirable to develop the above expression around the eigenvalues of the unperturbed 

problem and call the expansion 
.

odd

symC  and 
.

even

symC  respectively. We can then write 

 

      

 
 

. 1/ 2

1

2 2 2 2

2 2

1
1

/ 2 1
( )

1 ln

1

1 ln 1

1 ln 1 ln

odd I I

sym

n n

n

i
C ie A ie A

d d
i E E i E E

dE dE

dk d
i

dE dE
i

d dk

dE dEE E i
dk d dk d

dE dE dE dE

 

   

 


 






 



 

 

 



 
  

     
      

 





 
 

   
  

 
   
        

         
        





 
 
 
 
 
 
 
  



        (25) 

 
Repeating the same procedure for the even eigenfunctions we similarly find  



NAUSIVIOS CHORA, VOL. 5, 2014  

 

http://nausivios.snd.edu.gr/nausivios 

C-28 
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It is obvious that the form of the semiclassical Greens function is the same for both odd and 

even eigenfunctions. In addition the above expressions show that the Green’s function is 
constituted by two terms, a non pole term that gives the general background of propagation and 
the pole term, which is the second term of the equation. The pole term reveals the complex 
energy eigenvalues, since now the initially prepared state of continuum 1, (particle in allowed 
region O), decays in the continuum 2, (particle in allowed region IV). The imaginary part of the 
energy pole expresses the rate with which continuum 1 decays into continuum 2 and for this it is 
interesting to notice that it is clearly negative as it should.  This is true since k is an increasing 
function of energy and therefore the derivative dk/dE is a positive quantity. In addition there is a 
real energy shift also coming from the above interaction. Since the major contribution of the pole 
term can be written as a sum , we can actually write the Green’s function in the following form 
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                 (29) 

 

and where 
1 2( , )np z z  and *

( )nk z  are defined by 
1 2( , )p z z  and

*
( )k z  respectively for E=En. We 

should note that the nmax corresponds to the maximum quantum number that the barriers can 
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support.  However a more accurate result should be produced by developing the 
.symC  in second 

order around the unperturbed eigenvalues, meaning 
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     (30) 

Proceeding the algebra by first defining the following quantities,  
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we find for the perturbed eigenvalues, the following result 
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  (32) 

 
Not symmetric barriers case: 
 

     In the case of not symmetric potential barriers neither the III IA A      nor the 

I IIIA A     relation holds. The total path contribution from α to δ can be simply written as 
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            (33) 

 

The numerator of the above fraction expresses direct propagation from α to δ without 
interchanging the regions of motion while the denominator equals unity when the barriers 
strongly confine the inner quantum well. Looking the above relation in a more accurate way and 

since it is true that oikII IIA ie A   



  , the denominator becomes a second order polynomial of 

the amplitude IIA 
. Since the amplitude II IIA A     is defined according to (18c) as 

1

IIA i 




  


 and IIA 

 according to (18b) as 
1

IIA 




 


we can actually write equation 

(30) in the following form  
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              (34) 

 

where we have defined the real barrier factor
* 0   as 
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                       (35)  

As in the symmetric case direct remarks can be expressed concerning the structure of the 

above formula:  

a)  It is obvious that when *, , 1I IIIA A          which is the case of strong barrier 

confinement of the inner classically allowed region, practically no interaction with the continuum 
appears, we get 

                                                                   

0
0

1
not symC






 


                                            (36) 

 

b) Again as was shown in remark b) of the symmetric barriers case the condition 1 0   

determines the eigenvalues of the classically allowed region of motion.                                                                                                                                                              

 c) We can now investigate the case of maximum contribution which occurs when we 

minimize the denominator of the 
 not symC . This is equivalent to finding the solution of the equation 

*(1 ) 1 0     which is *
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1
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.  Since 

* is a small real quanti-ty σ becomes also a real 

quantity close but not equal to -1 which contradicts to its form of 
2ike  . For this we develop 

the denominator around 1   , or equivalently around the eigenvalues of the inner quantum 

well,  and substitute to the numerator the value *

1
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In this way the perturbed eigenvalues, for the not symmetric case, take the following form 

   

*
* * *

2 22 2* *
* *

2 (1 )

2( 1) 2( 1)

n n

n n

d dk

dE dEZ E i
d dk d dk

E E E E
dE dE dE dE


  

 
 



  
                

      

          (38) 

 
Again the imaginary part is clearly negative since quantity ρ* is normally much less than unity 

and the derivative dk/dE is a positive quantity. Again we can write the Green’s function as a sum 

of poles meaning 
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In each case of symmetry, equation (29,32) or (38), the complex energy poles take the 

general form, 
2

n
n n nZ E i


    and the width of the decaying state is analytically given as 

follows:  
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and 
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The fundamental time associated with the tunneling process if the exponential law is 

assumed for its evolution , is often taken as the lifetime of the quasi – bound state and is related 

to the width via the  


 . In this way we can write for the transport time, for the symmetric and 

the not symmetric case respectively, the following relations  
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and  
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For once again we should emphasize that the above expressions describe the transport time 
as long as the other time constants are significantly minimized.    

5. CONCLUDING REMARKS 

In this work we studied quantum transmission in a double barrier structure via the semi-
classical path integral method. This kind of potential covers a large area of interest and 
applications from different branches of physical sciences, from quantum chemistry up to 
nanoelectronics. As such we demonstrated the model of a quantum tunneling diode. We 
produced analytic relations for the transmission amplitude, which is the Green’s function for 
single charge transport between the two metals of the diode, due to resonant tunneling. The 
Green’s function, as was expected, appears to have a pole structure which reveals the complex 
energy spectrum of the structure. The later is described via analytic relations. The imaginary 
part of each complex pole is related to the time needed for transport, under certain 
circumstances where the barrier penetration strongly dominates all the other mechanisms  
generating an intrinsic time constant. The above study was done for both the symmetric and the 
not symmetric barrier case, concerning the absence or the application respectively of an 
external electric field, on the diode’s band profile. 
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Abstract. One of the most important natural resources is the water. Surface and ground 

waters are the main sources and there are several differences between them. We need 
not only water in adequate quantities to cover the human necessities but also we have to 
develop systems that deliver a good quality of water. The majority of human uses require 
fresh water. However, in water sources there are several undesirable contaminants. A 
conventional water treatment includes the processes, flocculation, coagulation, 
sedimentation, filtration and disinfection. In some cases, a serious issue that we have to 
deal with is the hardness of water. In this paper we study the effect of magnetic fields on 
the removal of calcium carbonate which is responsible for the water hardness. 

INTRODUCTION 

The water is a vital element for life. Man can survive without food for more than a month but it 
is impossible to live without water for more than one week. He needs water to survive. Every cell 
of the human body requires water as nourishment and to remove wastes. The lack of water 
reduces the amount of blood, causes many problems in health. 

The role of water in human culture and civilization is well documented all over the world. It is 
very significant all people to have access to this resource, as water is used for drinking, 
preparing food, cleaning, bathing, irrigating landscapes etc.   

Water is considered as a renewable resource. In our days the world's supply 
of groundwater is steadily decreasing due to the expanding human population and its 
competition for the water. Even the climate change is a significant factor that affects the 
available quantities of water. The strong connection between the climate and hydrologic cycle is 
studied intensively.   

The agriculture, industrial, household, recreational and environmental activities are the main 
uses of water. All these uses require fresh water. All over the world, a large percent of about 70 
% of water use is estimated that is for irrigation in agriculture. 

The major drinking water sources include ground water, surface water, atmospheric water 
generation, rain water harvesting, fog collection and sea water.  

Surface water and groundwater are both important sources. Approximately 98 percent of 
liquid fresh water exists as groundwater, much of it occurs very deep in the Earth. This makes 
pumping very expensive, preventing the full development and use of all groundwater resources.  

The accessibility to safe drinking water are of major concern throughout the world. The 
drinking water must be free of chemical substances and organisms, when it is used for human 

http://en.wikipedia.org/wiki/Renewable_resource
http://en.wikipedia.org/wiki/Groundwater
http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Household
http://en.wikipedia.org/wiki/Recreational
http://en.wikipedia.org/wiki/Natural_environment
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consumption. The increase use of chemicals in most countries has deteriorated the water 
quality.   

Each source of water has a unique set of contaminants. The quality of ground and surface 
water is not the same In most cases the ground water in contrast with surface water is 
microbially safe and chemically stable in the absence of direct contamination. For example 
groundwater contains pesticide chemicals and nitrate while surface water stores most bacteria 
and other microorganisms. These contaminants may be shared between the two sources due to 
their interconnectedness. Their contamination could be varied depending on the source of 
pollutant. There is no water source free from undesirable contaminants.  

First of all, the water supplier has the responsibility to set the first barriers in protection of the 
water resources in order to provide drinking water of high quality. With this action that leads in 
decreasing of the contamination the degree of required treatment is reduced and the operation 
costs of a water treatment plant are lower. The factors that influence the quality of raw water are 
both natural and human. The first category includes wildlife, topography, geology, vegetation 
and the second refers mainly to wastewater discharges, urban and agricultural runoff, as 
agrochemicals and livestock or recreational use [1].    

The next step is the water treatment process including coagulation, flocculation, 
sedimentation, filtration and disinfection. These processes are used for the removal of particles 
and microorganisms. The microorganisms may be pathogenic and capable to cause disease or 
mortality to human population. Chlorination is the most common disinfection process while 
chloramination, chlorine dioxide application ozonation and ultraviolet irradiation are also used 
[1].  

DRINKING WATER 

Drinking water is the water that is safe enough to be consumed by humans or used with low 
risk of immediate or long term harm. Another definition of water is potable. This word comes 
from the latin potabilis, meaning drinkable. 

The occurrence of undesirable contaminants in raw water affect the human health and 
influence the water quality. The removal of them is necessary and obligatory in most of the 
cases and especially crucial when the water source is surface.  

The quality parameters set for drinking water described by drinking water quality standards. 
In most developed countries, the water supplied to households, commerce and industry meets 
these standards.  

All  developed countries specify quality standards of drinking water to ensure the 
consumption of safe water   In European Union drew up the Council Directive 98/83/EC on the 
quality of water intended for human consumption, adopted by the Council on 3 November 1998. 
This Directive provides a sound basis for both the consumers throughout the EU and the 
suppliers of drinking water [2]. 

In USA, the Environmental Protection Agency (EPA) sets standards that, when combined 
with protecting ground water and surface water, are critical to ensuring safe drinking water. EPA 
works with its regional offices, states, tribes and its many partners to protect public health 
through implementing the Safe Drinking Water Act [3].  

World Health Organization (WHO) produces international norms on water quality and human 
health in the form of guidelines that are used as the basis for regulation and standard setting, in 
developing and developed countries world-wide [4]. These guidelines are the international 
reference point for standards setting and drinking-water safety. 

http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Parameter#Environmental_science
http://en.wikipedia.org/wiki/Drinking_water
http://en.wikipedia.org/wiki/Developed_country
http://en.wikipedia.org/wiki/USA
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WATER POLLUTION 

There is evidence of widespread contamination of water resources. It isn’t known exactly the 
health effects from the long term exposure to the contaminants that enter in the water supply 
system. It is noticed that all contaminants do not pose a threat to human health. When the 
pollutants enter water sources their concentrations dilute and are reduced by biological 
degradation, filtration, and adsorption to soil. Some chemicals are very stable in the 
environment, such as the chlorinated hydrocarbons. Some of these can accumulate in living 
organisms and are not readily metabolized and excreted. The most effective way of reducing 
contaminants in drinking water is by controlling it at the source.  

Iron, manganese, barium, fluoride, hydrogen sulfide, and salt may be present in water 
resources at undesirable levels. Bacteria from sewage, and animal wastes are a common 
problem. Another issue is the high level contamination form nitrate-nitrogen levels in agriculture 
areas.  

In order to have unpolluted water man treated it from the ancient years. The first methods of 
water treatment were recorded as early as 4000 B.C. In ancient Greek and India (Sanskrit) the 
filtering, the exposing to sunlight, the boiling and the straining were applied to improve the taste 
and odor of drinking water. The Egyptians after 1500 BC, using the chemical alum, discovered 
the coagulation method that caused the settling out of suspended particles. Another significant 
process for removing particles from water was filtration. This method was established during the 
1700s. In Europe the filtration with sand was used by the early 1800s.This method was 
established as a successful way of removing particles from water and widely adopted in Europe 
during the nineteenth century. During the middle of nineteenth century was discovered a cholera 
epidemic spread through water and then the chlorination method was applied to purify the 
water. In this period worries about the quality of drinking water focused on pathogens in public 
water supply systems. The chlorination played a significant role to reduce the waterborne 
disease outbreaks in the early 1900s, as it was clear that filtration did not remove all the bacteria 
from public-use water. Today, the most effective treatment techniques for protecting water 
supplies from harmful microbes are filtration and chlorination [5,6].   

However during chlorination, chlorine reacts with natural organic materials and forms a large 
category of organic compounds, named haloforms that may pose carcinogenic or mutagenic 
properties. A characteristic example is trihalomethane (THM) formation [7].  

WATER TREATMENT PROCESSES 

Drinking water treatment technologies and purification techniques have been used and 
continuously developed over the ages, to protect public health from pathogens and chemicals 
[6].  

Coagulation, flocculation, sedimentation, filtration and disinfection are the most commonly 
applied water treatment processes. They used worldwide in the water treatment industry, from 
the end of nineteenth century, before the distribution of drinking water to consumers [8].  

Each process is used for different purpose [1,9,10,]: 
 Coagulation promotes the interaction of small particles to form larger particles. The process 

refers to coagulant addition (i.e. addition of a substance that will form the hydrolysis products 
that cause coagulation), particle destabilization and interparticle collisions. Chemical coagulation 
has indirect impacts on the efficiency of disinfection process. 
 

 Flocculation is the physical process of producing interparticle contacts that lead to the 
formation of large particles. 

http://extoxnet.orst.edu/faqs/glossary.htm#Adsorption
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The goal of coagulation and flocculation is to remove fine suspended particles. These 
particles can attract and hold bacteria and viruses to their surface. The percentage of 
removal for bacteria and viruses is 99.9 and 99, respectively. They can also remove some 
of the organic matter that gathers as water travels across the land, from raindrop to 
surface water. However, they cannot remove full taste and odor.  

 Sedimentation is a solid–liquid separation process, in which particles settle under the force 
of gravity. 

 Filtration can act as a consistent and effective barrier for microbial pathogens and in some 
cases may be the only treatment barrier. It occurs as the water passes through a 
substance that helps remove even smaller particles. Filters can be made of layers of sand, 
gravel and charcoal. 

 
However in many cases this treatment is not sufficient. For example, adsorption and 

oxidation may be required if undesirable impurities contained in the water. These are two 
additional treatment processes, where adsorption is a type of chemical filtration while oxidation 
can offer water disinfection and can destroy taste, odor, algal toxins, pesticides and other 
soluble contaminants. Oxidation can also remove iron and manganese [9].  

These processes are very common all around the world and their purpose is to remove 
turbidity and contaminants from water and to improve and protect water quality. The 
characteristics of the water, the types of water quality problems, the cost of different treatments 
processes and some other factors define the alternative treatments that would be chosen. A 
great challenge involving technological development is the need to develop technology that is 
suitable, applicable, and sustainable [6].  

THE ROLE OF MAGNETIC MATERIALS TO WATER PURIFICATION 

Water purification using physical methods such as magnetic separation, have drawn the 
attention of the scientific community in the past few decades. The formation of scale deposits by 
natural waters can significally limit or completely block the water flow in pipes or boilers and 
heat exchangers, resulting in heat transfer efficiency reduction and leading progressively in 
equipment damage. Huge amounts of energy are wasted therefore causing severe technical 
and economic problems in the industry. 

Experimental results of a magnetic field on the precipitation process of calcium carbonate 
scale from a hard water have been reported [11]. Because a magnetic field is able to disturb the 
double ionic layer surrounding the colloidal particles and their zero potential, would also tend to 
reduce the nucleation rate and to accelerate the crystal growth. Experimentally the nucleation 

time was identified from the variations of the pH and the 
Ca concentration. It was shown that 

the magnetic treatment increases the total amount of precipitate and the effect depends on the 
solution pH, the flow rate and the duration of the treatment. 

In order to better understand and explain how a magnetic field influences nucleation, another 
study [12] using X-ray diffraction and electron microscopy techniques for the characterization of 
the carbonates formed by heating water has shown that drawing water through a static magnetic 
field of approximately 0.1 T increases the aragonite/calcite ratio in the deposit. 

A valuable review paper [13] presents and explains several aspects on water purification 
techniques using magnetic assistance. According to this paper based on the difference in 
adoption of physical process, magnetically assisted water purification can be classified in 
several categories, as follows. In the direct purification method, there is no carrier magnetic 
component added. The magnetic field helps in inducing crystallization and then a magnetic filter 
is used to remove salt ions and to prevent them to enter the pipelines. Seeding method following 
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by a high gradient magnetic separation device is also one of the older methods used for water 
purification.  A coagulant cation under proper chemical conditions yields an insoluble precipitate 
with positive susceptibility under applied magnetic field. This property is used to trap the 
coagulant with contaminant on a magnetic filtration assembly. Magnetic ion exchange resins 
method were introduced for the removal of organic matter from ambient raw water, because the 
ion exchange resin beads contain a magnetized component within their structure which allows 
the beads to act as individual magnets and form agglomerates. Finally in the combined 
application method, as the name indicates, magnetic separation techniques are additionally 
employed in order to further improve the separation efficiency after the initial treatment of the 
water with electrolytic or catalytic reactions.  

Magnetism helps in water purification by influencing the physical properties of the water 
contaminants. The method exploits the difference in behavior of particles in magnetic fields. This 
property is characterized by a dimensionless variable called magnetic susceptibility which is 

denoted as χ. The specific magnetic susceptibility is then defined as  /m , where  is the 

density of the material. Materials which repelled from the magnetic field have negative values of 
magnetic susceptibility and are called diamagnetics, while particles attracted towards greater 
intensity of the magnetics field are called paramagnetics. 

 
Magnetics separation is based on the principal that the force acting on a particle is given by 

the equation HmHF m  0   

Therefore the component of the force acting on a particle in magnetic field in the x-axis is

x

H
mHF mx




 0 , where mAWb ./104 7

0

   denotes the magnetic permeability of vacuum, 

H is the magnetic field intensity, m the mass of the particle and 
x

H




is the field gradient.  

From this equation it is obvious that the collection of particles is strongly depends on the 
creation of these large magnetic field gradients, as well as on the particle size and its magnetic 
properties. This can be achieved by placing magnetically susceptible wires inside an 
electromagnet. These wires dehomogenize the magnetic field producing large gradients around 
the wires that attract magnetic particles to their surfaces and tram them there. Consequently 
with the adoption of this technique, the formation of calcium carbonate particles expected in the 
bulk of the scaling water preventing them to precipitate on the walls of the distribution pipes. 

 
Another crucial aspect is the strength of the magnetic field that we are going to employ in a 

magnetic separator. In cases where the pollutant are solids, separators based on permanent 
magnets are the most appropriate choice, while in cases where the amount of pollutants is low, 
high intensity magnetic field is required and the superconducting magnets should be used. A 
superconducting magnet is an electromagnet with coils made out of superconducting wires. 
During its operation is has to cooled down to cryogenic temperatures. The major advantage of 
using superconducting magnets, is basically their reduced operation costs, which is due to the 
fact that basically there are no losses of power to ohmic resistances. Finally an important 
application of superconducting magnets is the removal of the radio toxic hazard of plutonium 
which is form compounds with paramagnetic properties. 

CONCLUSIONS 

The clean drinking water is a crucial matter. Population growth, changes in habits and our 
daily needs have created a tremendous demand for potable water that meets the quality 
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standards. The conventional processes including coagulation, flocculation, sedimentation, 
filtration and disinfection reduce the concentration of particulate matter and provide water that 
does not contain pathogenic contaminants.   

One of the major problems is the water hardness. Waters with high hardness treated to 
remove the calcium and magnesium salts. The principle of water purification using magnetic 
separation methods has been analyzed and applied in the case of calcium carbonate particles 
removal. The efficiency of the process can be evaluated by measuring the ionic calcium 
concentrations before and immediately after the water treatment. Despite the fact that this is a 
very promising and low cost operation method, several other parameters like the geometry of 
the device separator, the velocity of the water flow, the temperature of the water which can 
affect the solubility and the precipitation of the calcium carbonate and the pH of the water, have 
to be studied more thoroughly in order to maximize the efficiency of the water treatment 
process.  
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Abstract. Optimal weather routing of ships seeks to determine the voyage route, in rough 

seas, which minimizes a certain metric or criterion (e.g. transit time, consumed bunker 
fuel, pollutant emissions etc.). In this paper the problem of minimum-fuel navigation in a 
sea state is studied. Advanced methods of hydrodynamic simulation are employed to 
compute the added resistance in waves and the responses of an example-ship in random 
incident waves. A fictitious trans-Atlantic route is introduced. Given the wave forecast of 
the geographical region of interest, the problem of determining the route that minimizes 
fuel consumption is numerically solved using an improved Dynamic Programming 
algorithm. It is concluded that significant savings in bunker fuel may result from the 
implementation of a decision support system based on state-of-the-art hydrodynamics, 
wave forecasting and optimization methods.  

Keywords: Routing; optimization; hydrodynamics; resistance; fuel consumption. 
PACS: 02.30.Yy, 47.35.Lf  

INTRODUCTION 

The shipping industry consumes about 5% of the world oil production in bunker fuel for 
maritime transportation. That corresponds to approximately 4 million barrels of oil a day. This 
fact warrants an effort to optimize navigation in a way that will bring the fuel cost down to the 
extent possible. A new approach to the solution of the optimal routing problem is presented in 
this paper. A combination of frequency domain methods for the computation of the ship 
hydrodynamics, state-of-the-art weather forecasts and advanced dynamic programming 
algorithms is utilized to generate trajectories (ship routes in the ocean) which minimize the 
required fuel while meeting certain safety restrictions associated with the severity of the sea. 

The optimization problem associated with the selection of the fuel-minimizing route of a ship 
in a sea state is challenging. In calm weather the optimal route within the constraints imposed 
by sea lanes is usually the loxodrome (or the orthodrome for long routes), and the fuel 
consumption is known with a high degree of certainty given the sailing distance and the calm 
water resistance and propulsion characteristics of the vessel. In rough weather a number of 
complexities arise. The severity of the sea states to be encountered during the trip is not known 
a priori with certainty and must be estimated from weather forecasts supplied by a routing 
service. When sailing in rough seas, safety criteria must be met that protect the integrity of the 
hull and the cargo. They affect the vessel speed and heading in a sea state. Reliable 
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seakeeping methods must be available in order to predict the vessel responses and the 
increase of her resistance in waves – the added resistance – given the attributes of the wave 
system. Finally, a robust and efficient dynamic optimization algorithm must be available that 
may be executed in real time to determine the optimal speed and heading of the vessel in rough 
weather in order to minimize the fuel consumption, subject to the safety constraints. These 
challenges are addressed in the present paper and an optimal ship routing algorithm is 
developed that leads to a notable reduction of the vessel fuel consumption in rough weather. 

Literature Review 

The problem of ship weather routing has been a subject of extensive research for many 
decades now. A comprehensive, albeit not exhaustive, review of the research work in the field 
starting from the 1950’s can be found in Avgouleas (2008). Some of the developments in the 
last 10 years will be briefly presented here. Rathje and Beiersdorf (2005) developed a shipboard 
routing assistance (SRA) software to prevent containerships from encountering dangerous 
conditions with respect to seakeeping behavior (parametric rolling, slamming, exceedance of 
bending moment and shear force threshold values). Montes (2005) proposed a method for the 
automation of the Optimum Track Ship Routing (OTSR) system used by the US Navy. In 
Abramowski et al. (2006) a formal solution of the minimal time ship routing problem is presented 
on the basis of Pontryagin’s maximum principle. Tsujimoto and Tanizawa (2006) solve the 
constrained optimization problem of minimum fuel routing, using the augmented Lagrange 
multiplier method. Böttner (2007) describes a decision support system able to provide optimal 
alternatives in case the ship finds herself in degraded condition (hull damage, rudder/propulsion 
failure etc.). The work of Szlapczyńska (2007) and extensions thereof (Szlapczyńska and 
Smierzchalski 2007-2009, Krata and Szlapczyńska 2011, Szlapczyńska 2013) focuses on 
deterministic weather routing of a sail assisted ship using Multi-Objective Evolutionary Algorithm 
(MOEA). Panigrahi et al. (2008) carry out a simulation of wave climate in the Indian Ocean and 
use it to minimize voyage time for a cargo ship route in the region. The optimization utilizes the 
Dijkstra algorithm and speed loss in waves is calculated from empirical curves. In Panigrahi et 
al. (2012) the hydrodynamics of ship motions and added resistance in waves are treated 
differently. Empirical speed loss curves are abandoned and standard frequency domain 
seakeeping computation is adopted. Sen and Padhy (2009) conducted a similar study using a 
Dijkstra algorithm as well, but with linear strip theory for hydrodynamic simulation. Wisniewski et 
al. (2009) utilize evolutionary algorithm to determine the minimum time route which safely avoids 
a tropical cyclone. Mezaoui et al. (2009) solve the unconstrained constant-speed minimum fuel 
problem in coastal navigation using high resolution forecasts and a Dijkstra optimization 
scheme. Dolinskaya et al. (2009) deduce shortest-time optimal paths inside convex regions of 
areas that a ship can sail. Their analysis is restricted to short-range optimal routing. Marie and 
Courteille (2009) deal with the deterministic dual-objective optimization of minimum 
time/minimum fuel route using Multi-Objective Genetic Algorithm (MOGA) and identifying Pareto 
optimal solutions. Hinnenthal and Clauss (2010) solve the same problem using similar principles 
but they quantify the robustness of the final solution exploiting ensemble forecasts. Delitala et al. 
(2010) explore the results of climatological simulations in combination with weather routing. 
Bruns et al. (2011) present a software tool for fuel efficient speed profile selection using 
potential flow CFD for calm water resistance prediction, strip theory for added resistance in 
waves and RANS modeling for the propulsor (both in design and off-design conditions). 
Gershanik (2011) addresses the challenges and benefits of weather routing optimization. The 
author advocates the use of the classical discrete dynamic programming algorithm (backward 
recurrence) for the minimum time or the minimum fuel optimal routing problem. Pipchenko 
(2011) solves the deterministic minimum work ship routing using genetic algorithm or a Nelder-
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Mead heuristic method. Maki et al. (2011) propose a route optimization method that considers 
not only fuel efficiency but also ship stability (the risk of parametric rolling in particular). A real-
coded genetic algorithm (GA) is used for the multi-objective optimization problem. Kobayashi et 
al. (2011) optimize the route of a containership in a simulated trans-oceanic passage, 
accounting for ship maneuvering dynamics. Dolinskaya (2012) introduces the notion of 
restricted turning radius in optimal path finding of a vessel in an inhomogeneous, non-stationary 
environment. Kosmas and Vlachos (2012) apply the simulated annealing method for the 
minimization of a cost function defined by the weighted sum of voyage time and a comfort 
parameter related to safety. Ilus and Heikkinen (2012) present a speed profile optimization 
approach which relies on historical and operational data collected for a specific route or leg of a 
voyage. The aim is to optimize energy usage while meeting prescribed constraints. Shao et al. 
(2012) solve the deterministic minimum fuel routing problem using a discrete 3D dynamic 
programming algorithm. Skoglund et al. (2012) present a method to obtain optimal routes in a 
directed graph using the concept of Pareto optimality. Both deterministic and ensemble 
forecasts are used. Tsou and Cheng (2013) combine an ant colony algorithm with a genetic 
algorithm for the solution of the minimal fuel and pollutant emission weather routing problem. In 
their recent work, Marie and Courteille (2014) construct a fuzzy logic model with data collected 
from ship’s sensors to minimize fuel consumption of a sail-assisted motor vessel. 

Model Overview 

An example-ship is used from the Series 60 hullform, with the characteristics shown in table 
1. A standard MARIN B-Series propeller is selected for this ship and a MAK 9M25C medium-
speed, four-stroke diesel engine is matched with the propeller via a mechanical gearbox. 

Resistance in calm water is calculated from standard statistical methods (Holtrop 1984). 
Added resistance in waves is computed using SWAN1, a frequency domain CFD code which 
uses 3D Rankine Panel Methods to simulate steady and unsteady potential flows around 
vessels with realistic hull shapes. Unlike most conventional strip and slender-body theories, 
SWAN1 exploits robust computational hydrodynamics methods to produce reliable results 
where approximate theories fail. The case of quartering and following waves can be mentioned 
as an example. At certain speeds they correspond to the sub-critical reduced frequency regime 
(τ<¼) and represent challenging hydrodynamic problems intractable by strip theory. The same is 
true for the computation of added resistance in waves. Added resistance is a second order 
effect of central importance to weather routing, as it influences both the calculation of fuel 
consumption and the prediction of engine overload in a sea state. SWAN1 computes added 
resistance using direct integration and its results have been calibrated against numerous 
experiments carried out for America’s Cup yachts (Sclavounos and Nakos 1993). In addition to 
resistance, all ship responses in waves are computed by SWAN1. In particular, pitch and heave 
motions and velocities near the ends of the hull are required to calculate probabilities of 
slamming and deck wetness. Limiting values imposed on these probabilities define safety 
constraints in the formulation of the minimum fuel consumption problem. Spectral analysis is 
used to estimate the mean added resistance and RMS values of the ship responses in a sea 
state with a given direction, significant wave height and modal period. The vessel hydrodynamic 
properties are computed a priori in the frequency domain across a wide range of encounter 
frequencies, ship speeds and wave headings and stored in a database for use in the solution of 
the fuel minimizing ship routing problem. Therefore, the time-consuming solution of the ship 
hydrodynamic problem in the time domain is avoided. 
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TABLE 1.  Principal Dimensions of Example-Ship. 

Description Symbol Unit Value 

Length at DWL L  m  101.7 

Beam at DWL B  m  14.28 

Draft at DWL T  m  5.7 

Freeboard at DWL (bow) H  m  2.85 

Displacement   tonne  5700 

Wetted Surface Area S  2m  1950 

Block Coefficient 
BC  - 0.676 

Prismatic Coefficient 
PC  - 0.688 

Midship Section Coefficient 
MC  - 0.982 

 
 

TABLE 2.  Propeller Characteristics of Example-Ship. 

Description Symbol Value 

Diameter (m) D  3.2 

Pitch Ratio /P D  1.2 

Expanded Area Ratio EAR  0.75 

Number of Blades z  5 

 
 

TABLE 3.  Engine Characteristics of Example-Ship. 

Description Value 

Type MAK 9M25C 

Rated Power (MCR) (kW) 3000 

Rated Speed (rev/min) 750 

Gear Ratio 4.45:1 

 
A third generation model, WAM cycle 4, developed at the European Center for Medium-

Range Weather Forecasts (ECMWF) and adapted by the University of Athens (UoA), Greece, 
provides the weather forecast for the region of interest. The forecast is uploaded daily and 
covers a total of 168 hours. A fictitious cross-Atlantic route starting from Cape St.Vincent, 
Portugal, and ending at Norfolk Virginia, USA, defines the nominal voyage track considered in 
the present study. It is assumed that the nominal (calm water) speed for this trip is 13 knots. The 
nominal sailing distance is 3138.6 nautical miles following the shortest route, which is the great 
circle route (orthodrome). At that speed the trip would last 10.06 days. Mercator projection is 
used throughout. For the part of the route not covered by the wave forecast, calm water is 
assumed.  

Keeping the start and end points fixed (“hard” constraints) and the “expiration time” of the 
chartering contract also fixed (i.e. the time at destination), a special Dynamic Programming (DP) 
algorithm is implemented in MATLAB® which calculates the optimal route with backward 
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recurrence. To safeguard against the shortcomings of the standard DP algorithm, namely the 
large requirements for memory storage and processing capacity, Iterative Dynamic 
Programming (IDP) is employed. IDP is an advanced extension to the standard DP algorithm 
(Luus 2000). It retains all the benefits of DP without suffering the infamous drawback known as 
the “curse of dimensionality”.  

 

HYDRODYNAMICS 

Calm Water Resistance 

Calm water resistance mainly consists of three components: friction, form and wave drag. 
The friction drag coefficient is calculated in this paper by the ITTC 1957 model-ship correlation 
line  

 

 
0.075

2(log Re 2)
10

fC 


 (1) 

 
The form drag coefficient is calculated from the Holtrop regression model (Holtrop 1984). It is 

given in the form of an enhancement factor k to the friction drag coefficient, based on the hull 
geometry and accounting for the presence of bilge keels (if present) and appendages. In this 
example, a bare Series 60 hull model is entered in the resistance calculations and the Holtrop 
resistance curve is shown in figure 1. 

 
FIGURE 1.  Steady Resistance from Holtrop Method. 

 
The total calm water resistance coefficient is expressed as: 
 

 
a(1 )total f wC k C C C      (2) 

 
where Ca  is the model-ship correlation allowance and Cw the wave-making resistance 
coefficient, both obtained from the Holtrop statistical method. For a ship with total wetted surface 
S moving with constant forward speed U the total resistance is given by: 
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Propulsion 

The thrust T and torque Q of a propeller with diameter D rotating at a speed n in a fluid with 
density ρ can be expressed in non-dimensional form as thrust and torque coefficients, KT and KQ 
respectively: 

 

 
2 4T

T
K

n D
  (4) 

 

 
2 5Q

Q
K

n D
  (5) 

 
The speed at which the propeller is moving in the wake is the speed of advance UA: 

 
 (1 )AU w U    (6) 

 
The parameter w is an average measure of the wake effect and is termed wake fraction. The 
speed of advance can be non-dimensionalized to a parameter known as the advance ratio: 

 

 AU
J

nD
  (7) 

 
The rate at which fuel mass is consumed in the engine is: 

 
 ( )B Bq sfc P P   (8) 

 
The engine break power PB is related to resistance through the following expression: 

 

 total
B

D TRM

R U
P

 
  (9) 

 

The quasi-propulsive efficiency ηD can be expressed as the product: 
 

 D R o H     (10) 

 
The relative rotative efficiency ηR and hull efficiency ηH are parameters dependent mainly on 

the geometry of the hull. Although these parameters depend on speed too, the dependence on 
hull geometry dominates and they are often assumed constant in naval architecture. For the 
particular example-hull used here their values are 1.035 and 1.097 respectively, interpolated 
from the propulsion factors of the Series 60 parent models (Todd 1963). The open water 
propeller efficiency can be expressed in terms of the propeller parameters: 

 

 
2

T
o

Q

K J

K
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
  (11) 

 

The term ηTRM in equation (9) stands for the transmission efficiency, which can be decomposed 
further into a product of shaft and gearbox efficiency: 
 

 TRM S GB    (12) 
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In the example considered here the gearbox and shaft efficiencies are assigned typical values of 
0.96 and 0.98 respectively. 

Ship Dynamics in Waves 

SWAN1 solves the linear forward speed seakeeping problem of the three-dimensional flow 
around vessels of arbitrary geometry. Linearity allows for the solution of the problem using 
frequency domain methods. The ambient waves are harmonic and so are the ship motions. Real 
sea states are modeled by spectral analysis using the frequency domain results from SWAN1. 
The computational domain for this study is shown in figure 2. The rectangular grid extends 50m 
from the bow to the upstream free surface boundary, 100m from the stern to the downstream 
boundary and 140m from the ship’s centerline to the lateral boundary. 

 
FIGURE 2.  SWAN1 Computational Grid. 

 
A ship-fixed reference frame Oxyz with the z=0 plane coinciding with the calm water surface 

and the positive x-axis coinciding with the positive ship axis on the waterline is related to the 
earth-fixed OXYZ frame through the Galilean transformation: 

 
 X x Ut   (13) 

 
 Y y  (14) 

 
 Z z  (15) 

 
The total velocity potential Φ(x,t) can be decomposed into a sum of two terms: 

 
 ( , ) ( , ) ( , )t t t  x x x  (16) 

 
The first term on the right hand side represents the steady flow potential, which can be further 
decomposed into a basis flow and a disturbance flow: 

 
 ( , ) ( , ) ( , )t t t   x x x  (17) 

 
The basis flow potential ( , )t x  accounts for the thickness effect of the ship’s hull as it 
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encounters the uniform ambient stream of velocity -U (the moving ship is equivalently treated as 
fixed against an oncoming uniform flow). The disturbance potential ( , )t x  accounts for the 

presence of the steady wave disturbance that forms the Kelvin wave pattern. The sum of these 
quantities satisfies the zero normal flux condition on the mean position of the hull. In SWAN1 the 
linearization of the steady flow is carried out around the double-body basis flow. The free 
surface is replaced by a rigid wall at z=0, on which: 

 

 0
z





 (18) 

 

( , )t x  represents the potential of the flow around the hull and its image above the plane z=0. By 

this representation, the hydrodynamic end effects are modeled more accurately than in typical 
strip and slender-body theories in which the basis flow is just the ambient free stream. The field 
equation, the free surface and radiation conditions and the aforementioned boundary conditions 
formulate a boundary value problem (BVP), which is solved numerically in SWAN1. The solution 

 corresponds to a steady outgoing wave pattern known as the Kelvin wake. 
The second term on the right hand side of (16) is the unsteady velocity potential associated 

with the ambient (harmonic) wave, its interaction with the hull and the resulting ship motions. It 
can be expressed as: 

 

  ( , ) ( )  i tt e e  x x  (19) 

 
In the above expression the harmonic term oscillates with the encounter frequency ω: 

 
 coso kU     (20) 

 
where ωo is the absolute ambient wave frequency defined relative to the earth fixed coordinate 
system and k the corresponding wavenumber, given by the dispersion relation in deep water: 

 

 
2

k
g

  (21) 

 
Following the standard convention for relative wave direction, the angle β is measured from the 
stern (β=180o means head wave). 

The complex potential   in (19) is a superposition of the incident wave potential I , the 

diffraction potential D  and the radiation potentials 
j , j=1,…,6 for all modes of motion: 

 

 
6

1

I D j

j

   
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    (22) 

 
SWAN1 solves the relevant BVP for the diffraction potential D  and calculates the (complex) 

excitation forces from the linearized Bernoulli equation extended to account for the modeling of 
end effects by the double-body basis flow: 
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   
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B
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S

X Pn dS   (24) 

 

Furthermore, upon solving the BVP for the radiation potentials 
j  SWAN1 provides the complex 

amplitudes of motion for all six degrees of freedom in the form of Response Amplitude 
Operators (RAO), normalized by the ambient wave amplitude: 
 

   
( )

( )
j

jRAO
A





 , j=1,…,6 (25) 

 
Examples of RAOs in heave and pitch in oblique (bow and stern quartering) waves for a Froude 
number of 0.21 (13 knots) are shown in figures 3 to 6. The RAO’s are plotted against the 
encounter period of the wave.  

 

 
FIGURE 3.  Heave RAO in Bow Waves at 13 Knots. 

 

 
FIGURE 4.  Pitch RAO in Bow Waves at 13 Knots. 
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FIGURE 5.  Heave RAO in Quartering Waves at 13 Knots. 

 

 
FIGURE 6.  Pitch RAO in Quartering Waves at 13 Knots. 

   

Added Resistance in Waves 

Added resistance is a hydrodynamic force of paramount significance to the ship routing 
problem. The effect of waves manifests itself in the fuel consumption through the existence of 
this additive resistance force. Standard methods exist for the calculation of added resistance, 
but with relatively narrow range of applicability in terms of wave direction (Gerritsma and 
Beukelman 1972) or Froude numbers (Faltinsen et al. 1980).  

SWAN1 implements the direct pressure integration method and accurately models the 
hydrodynamic effects near the ends of the ship which are essential for the robust prediction of 
the added resistance. The total velocity potential is given by (16). The total resistance is the x-
component of the hydrodynamic force: 
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 1

B

T B

S

R Pn dS   (26) 

 
The above force is obtained by integrating the total hydrodynamic pressure: 

 

 
1

2
P gz

t


 
    

 
 (27) 

 
around the instantaneous submerged hull surface SB. Replacing  by the steady flow potential 

 in (27) and integrating the resulting P over the mean surface of the submerged hull, the calm 
water resistance follows: 

 

 1

B

calm B

S

R Pn dS   (28) 

 
The difference between the total and calm water resistance is oscillatory, time dependent and 
can be written as the sum of three components: 
 

 1 2 3total calmR R R R R     (29) 

 

 1 1

B

B

S

R Pn dS   (30) 

 

 2 1

B

B

S

R P n dS   (31) 

 

 3 1

B

B

S

R Pn dS



    (32) 

 
In the above relations, BS  represents the fluctuation of the mean wetted surface

BS that 

accounts for the ship motions, P is the correction to the steady pressure P  at some rigid point 

on the instantaneous position of the hull in waves and 1n  is the difference between the x-

component of the unit normal vector at the instantaneous and mean positions of the hull. By 

expanding (29) in a Taylor series around the mean position of the hull, the quantities BS , P , 1n  

appear explicitly in terms of  ,  and their gradients evaluated at the mean positions of the hull 

and the waterline. Since the latter quantities are available from the solution of the linear 

seakeeping problem, the added resistance can be calculated. For a monochromatic wave of 

amplitude A and frequency ω, at an angle of incidence β the added resistance is defined as the 

mean of (29), namely: 

 
 

1 2 3( , )wR R R R      (33) 

 
In SWAN1 the output is expressed as an Added Resistance Operator (ARO) normalized by the 
square of the ambient wave amplitude: 
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2

( , )
( , ) wR

ARO
A

 
    (34) 

 
Figures 7, 8 plot ARO vs. encounter period for the same wave headings as in figures 3 to 6. 
 

 
FIGURE 7.  Added Resistance Operator in Bow Waves at 13 Knots. 

 

 
FIGURE 8.  Added Resistance Operator in Quartering Waves at 13 Knots. 

 

For irregular seas characterized by a spectrum S(ω0,θ) the mean added resistance can be 

found by integrating the ARO and the spectral density over all constituent absolute wave 
frequencies and headings: 

 

 

2

0 0 0

0

2

2 ( , ) [ ( ), ]wR d d S ARO





      





    (35) 

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

T  (sec)

A
R

O
  

(k
N

/m
2
)

Added Resistance Operator,  Fn =0.21173

 

 

 =135o

0 5 10 15 20 25
-12

-10

-8

-6

-4

-2

0

2

4

6

8

T  (sec)

A
R

O
  

(k
N

/m
2
)

Added Resistance Operator,  Fn =0.21173

 

 

 =45o



PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2014, Hellenic Naval Academy 

C-51 

As explained below, wave and swell are treated as locally unidirectional, propagating along 
the mean directions computed by the forecasting model. In this setting integration over θ in (35) 
need not be carried out. In the evaluation of the mean added resistance by (35) the dependence 
of the ARO on the encounter frequency defined by (20) has been used to transform the 
integration in (35) over the absolute wave frequency. 

SEA STATE MODELING AND FORECASTING 

By means of an advanced CFD tool like SWAN1, the ship hydrodynamics in calm water and 
in waves is properly modeled, as outlined in the preceding section. In addition to resistance and 
powering, predicting the variability of the ocean environment is a necessity in optimal ship 
navigation. In this paper the representation of the sea state is derived from the results of the 
ECMWF global version of the WAM numerical model. The model solves the wave transport 
equation (i.e. the governing law of wind-wave energy balance) without any assumption on the 
spectral shape. The solution is the spectral density given at 28 different frequencies and 24 
wave directions for every grid point on the global map (Emmanouil et al. 2007). After processing 
the spectral information, the output contains significant wave height, maximum expected wave 
height, mean and peak frequencies and mean wave direction. For swell waves the output 
provides swell height, mean direction and mean frequency. These results constitute the wave 
and swell forecasts which are promulgated daily in 1-hour time intervals at each grid point. For 
reasons of computational efficiency the study presented here makes use of the forecast data in 
3-hour time steps. The spatial resolution of 0.5×0.5 degrees corresponds to an area of roughly 
55×55 km.  

Although WAM4 calculates the spectrum, the enormous size of the data files makes it 
impossible to process the direct information of spectral density ( , , , , )S t     as a function of 

position (i.e. longitude  -latitude ), frequency ω, direction θ and time t. Practical considerations, 

therefore, dictate the need to back-fit the output parameters of the model (namely mean 
frequency and wave height) to a standard spectrum which is anticipated to represent the actual 
sea state reasonably well. A bi-modal Bretschneider spectrum is selected for this purpose. By 
virtue of linearity, two separate single-peaked Bretschneider spectra can be superimposed, one 
describing the local storm (i.e. wind-generated waves) the other describing the swell. The 
expression for each of them is:  

 

 
4

4
2 0.437( / )

5
( ) 0.278S H e  




  (36) 

 
where  and H stand for the mean frequency and height of the wave (or swell) respectively. H

is related to the significant wave height sH  via: 

 

 1.6sH

H
  (37) 

 
The forecast time interval of 3 hours corresponds to a time window for which the 

assumption of stationarity of the sea state holds well. Stationarity, in turn, permits the utilization 
of frequency domain methods and spectral analysis in hydrodynamics which together with 
linearity allow the calculation of the mean added resistance from expression (35) and the 
estimation of the ship response statistics from analogous expressions. For example, the 
variance of heave motion (mode 3 in SWAN1) can be easily calculated, given the wave 
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spectrum and the RAO in heave: 

 
22

3 3

0

( ) ( )o o oS RAO d   



   (38) 

The variances of other derived responses may be evaluated in a similar manner and used in 
the equations of the constraints in the optimal control problem in question. 

All hydrodynamic attributes of a particular vessel of interest in the minimum fuel routing 
problem are contained in the ship response RAOs and the added resistance ARO. These 
quantities are computed once, in advance, as functions over all absolute wave frequencies, ship 
speeds and headings in unidirectional waves and stored in a hydrodynamic database 
customized for each vessel. They are subsequently used in expressions (35) and (38) together 
with the wave spectra supplied by the weather forecasts.  As will be seen below the mean 
added resistance and RMS values of the ship responses are the quantities that enter the 
minimum fuel routing problem and their evaluation is very efficient given the ARO and RAOs 
which are retrieved from the hydrodynamic database. 

Treating the spectrum as locally unidirectional in the vicinity of each position on the map (grid 
point x), the variance in equation (38) and the added resistance in (35) are both functions of the 
local prevailing direction of propagation θ0 of the sea state (i.e. the mean direction). Technically, 
the local directionality of the sea state is modeled by multiplying the spectral density by a 
“spreading function”, which in this setting is a delta function located at θ0: 

 
 0 0 0( , ) ( ) ( )S S         (39) 

 
Integration of an expression like (35) over all angles with the spectrum cast in the form of (39) 
eliminates all but one direction θ0. If the assumption of long-crested waves propagating in one 
direction is lifted, some directional spreading should be included in the model at the higher 
computational cost incurred by the double integration in (35). The use of different spreading 
functions (i.e. delta, cos2(), cosh-2(), Hasselmann formula, Mitsuyasu formula etc.) and their 
effect on the optimal solution and computational time will be addressed in future work.  

MINIMUM FUEL ROUTING 

Powering and Fuel Consumption in Rough Seas 

The equations of motion of the ship sailing in the ocean can be written in spherical 
coordinates as: 

 

  
1

( ) ( ) cos ( )
earth

t U t p t
R

     (40) 

 

 
 

 
1

( ) ( ) sin ( )
cos ( )earth

t U t p t
R t




  


 (41) 

 
The speed of the vessel is denoted by U and the course is denoted by p (measured relative to 
the true north). U refers to the speed through water (STW), which in the absence of currents 
coincides with the speed over ground (SOG). The latter is accurately measured by the GPS 
receivers on board. Ocean currents are not considered in the present study, but their inclusion 
in the model is straightforward. The spherical coordinates in the above equations are the latitude 
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,
2 2

 


 
  
 

 , measured from the equator (positive north), and the longitude  ,     measured 

from the Greenwich meridian (increasing eastbound). earthR  is the mean radius of the earth. The 

differential distance between positions  ,   and  ,d d     , if measured along the rhumb 

line (loxodrome) connecting the two locations, is given by: 
 

  2 2 2( ) ( ) cos ( ) ( )earthdS U t dt R d t t d t         (42) 

 
The loxodrome is the constant heading route connecting any two locations on the sphere. On 

a Mercator map this route appears as a straight line. On the other hand, the shortest distance 
between two points on the sphere is obtained if these two points are connected with a great 
circle arc. This is the orthodrome route. The great circle distance between points  2 2,  and 

 2 2,   is: 

  1
1 2 1 2 2 1cos sin( )sin( ) cos( )cos( )cos( )earthS R           (43) 

 
It is customary in navigation to approximate the great circle route with a sequence of rhumb line 
segments. This is the approach adopted throughout this paper. 

The position vector  ( ) ( ) ( )
T

t t t x is the state vector of the system, while 

 ( ) ( ) ( )
T

t U t p tu is the control vector. Assuming quasi-steady conditions, the thrust delivered by 

the propulsor is balanced by the total resistance: 
 

 
( ) ( , , , , )

( , , , , )
1

calm wR U R U p t
T U p t

t

 
 





 (44) 

 

where t denotes time to distinguish it from the thrust deduction factor defined as 
T R

t
T


 . 

Combining equations (4), (6), (7) and (44) yields the propeller load curve: 
 

 2

2 2 2

( ) ( , , )

(1 )(1 )

calm w
T

R U R t
K J

t w U D




 

u x
 (45) 

 

 
FIGURE 9.  Typical B-Series Chart. Intersection of load curve with thrust coefficient curve uniquely 

defines all the operational parameters of the propeller. 
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Equation (45) together with the TK curve of the B-series chart define a nonlinear system of 

equations for the unknowns TK  and J. Upon solving this system, the parameters KQ and o are 

readily calculated from (5) and (11) respectively. Figure 9 shows a graphical solution on the 
chart. The point of intersection of the load curve with the thrust coefficient curve uniquely 
determines the advance ratio J, from which the corresponding KQ and o can be read off the 

chart. From equations (8)-(12), the fuel rate can be expressed formally as a function of position 
in the ocean, control setting (i.e. speed and course) and time: 

 

 
( ) ( , , )

( , , )
( , , )

calm w

R o H S GB

R U R t
q t sfc U

t    


  

   

u x
u x

u x
 (46) 

 
The product of the last two terms in (46) is the engine load (break power). The dependence of 

the term sfc on engine load has been suppressed for brevity. Figure 10 demonstrates this 

dependence for the MAK 9M25C engine.  

 

 

FIGURE 10.  Specific Fuel Consumption as a Function of Engine Load (data source: ref [22]). 

The integral of (46) over the entire duration of the trip defines a scalar performance index: 

 

 

0

( ) ( , , )

( , , )

ft

calm w

R o H S GB

R U R t
I sfc Udt
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
  

   
u x

u x
 (47) 

 
The above index quantifies the total amount of fuel which has been consumed upon reaching 

the fixed final time tf . It is the cost function to be minimized in the optimization process.  

Inequality Constraints 

While seeking to minimize (47) there are certain limiting factors which in a typical optimal 
control problem appear as inequality constraints. Violation of these constraints is prohibited at 
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all times and this restriction changes the structure of the solution.  
State Constraints, namely limits in   and , could represent regions of forbidden navigation, 

such as shallow waters, land or ice. The numerical simulation in this study was carried out in the 
Atlantic Ocean below the arctic circle, so the possible influence of shallow waters and ice is not 
investigated.  

Control Constraints are bounds imposed by the propulsion plant capabilities. For example, 
the particular ship cannot exceed 15.45 knots in calm seas with the given engine at the 
particular loading condition, assuming clean hull. In addition, the engine load (an implicit 
function of the controls) is not permitted to exceed an envelope function g(PB,ne) which is 
depicted in figure 11, otherwise the engine will be overloaded. PB and ne represent the engine 
load and speed respectively.  
 

 

FIGURE 11.  Engine Operating Envelope (data source: ref. [22]). 

 
Therefore, the control bounds can be described as follows: 
 

    , ,B B eP U p g P n  (48) 

 
 min maxU U U   (49) 

 
In principle, the lower bound for speed should be zero. However, in the optimization example 

described below it was found that there is no gain in lowering the speed below 7 knots. As 
verified by SWAN, the responses in speeds lower than 7 are practically those of the ship at zero 
speed. Regardless of the initial conditions or the trial forecasts, it was observed that the 
program would always choose to avoid severe weather by altering the ship’s course while 
retaining speed above 7. Furthermore, there exists a lower bound for engine speed to avoid 
excessive vibrations. In order to save computational effort the lower bound Umin was set to 7 
knots. This limit corresponds (in calm water) to an engine speed of 311 revs/min, well above the 
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minimum allowable speed of 250 revs/min for this particular engine type (ref. [22]). 
Safety Constraints are enforced to ensure the secure transportation of the cargo and the 

physical integrity of the ship herself, while moving in rough seas. Quantifying safety is not a 
trivial task. The approach proposed here is to enforce “hard” inequality constraints on the 
probabilities of occurrence of certain extreme events associated with sea severity. Two such 
events are green water on deck (or deck wetness) and slamming. Other motion-related 
constraints could also be specified, at increased computational cost, depending on the type of 
vessel and nature of risks that must be taken into account when sailing in severe weather. For 
instance, parametric rolling is a dangerous situation that should be avoided especially in 
container transportation. In what follows, only restrictions on deck wetness and slamming have 
been considered, as they are deemed sufficient to demonstrate the concept and the benefits of 
constrained optimal routing. It should be noted that these two events are related to pitching and 
heaving, two longitudinal modes of ship motion which can be predicted by SWAN1 with 
remarkable accuracy. Considering a point Π1 in the uppermost part of the bow (bulwark), deck 
wetness occurs when the relative motion exceeds the freeboard f at point Π1. The probability of 

this event follows the Rayleigh distribution (Ochi 1998) and is given by: 
 

 

2

22
(water on deck) r

f

P e




  (50) 

 
The variance of the relative motion, 2

r , is calculated by an expression similar to (38). Slamming 

occurs when the relative motion at a point Π2 in the keel near the bow exceeds the draft H at 
that point and when the relative velocity exceeds a critical value: 

 

 0.093crV g L   (51) 

 
The critical velocity Vcr, gravitational acceleration g and waterline length L enter equation (51) in 
SI units. Assuming that the two events are statistically independent, the probability of slamming 
follows the Rayleigh distribution:  

 

 

22

2 22 2
(slamming)

cr

r V

VH

P e
 

 
  
 
   (52) 

 
where 2

r and 2
V are the variances of the relative motion and velocity, respectively, at point Π2. 

When the frequency of occurrence of slamming or deck wetness rises above certain limits, 
the motions are so severe that the ship’s safety is compromised and voluntary speed reduction 
is effected. The limiting probabilities assume the following values (Faltinsen 1990): 

 
 (slamming) 0.03P   (53) 

 
 (water on deck) 0.07P   (54) 

 
Substituting (50) and (52) in (53) and (54), respectively, and taking the logarithms of both sides 

the safety constraints take the form of inequalities involving the RMS values of the relative 

motion and velocities at selected points on the hull. The RMS values of these and other 

derivative seakeeping quantities may be evaluated easily from their definition and the use of 

expressions analogous to (38). 
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Formulation of the Optimal Routing Problem 

The complete formulation can be summarized in the standard format for constrained 
optimization problems: 
 

minimize   

0

( ) ( , , )

( , , )

ft

calm w

R o H S GB

R U R t
I sfc Udt

t    


  

   
u x

u x
 

 
subject to: 
 
Dynamic constraint: 
 

 
1

( ) ( ) cos ( )
earth

t U t p t
R

     

 

 
 

1
( ) ( ) sin ( )

cos ( )earth

t U t p t
R t




  


 

 
Control bounds: 
 

   , ,B B eP U p g P n  

 

min maxU U U   

 
Safety constraints: 
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 
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  
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    
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P e



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initial and terminal conditions: 
 

0

0

(0)
(0)

(0)




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 

 

   
    
   
   

x  

 
and final time: 
 

ft  prescribed 

In order to solve the problem numerically the discrete counterparts of the cost function and 
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dynamic constraint are needed. The sailing time is divided into N stages of length: 
 

 
ft

t
N

   (55) 

 
The equations of motion are approximated as: 

 

 
1

( 1) ( ) ( )cos ( )
earth

k k tU k p k
R

      (56) 

 

 
 

1
( 1) ( ) ( )sin ( )

cos ( )earth

k k tU k p k
R k

 


   


 (57) 

 
with 0(1)  , 0(1)  , ( 1) fN   , ( 1) fN   and 1,2,...,k N . 

 
The integrand in (47) is the Lagrangian. In discrete form the integral is approximated by a sum 

and the performance index becomes: 

 

  
1

( ), ( ), ( ), ( ),

N

k

I q U k p k k k k t 


   (58) 

NUMERICAL SOLUTION 

Dynamic Programming 

Dynamic Programming (DP) was introduced by Richard Bellman in the 50’s and has proven 
to be an invaluable tool in optimal control, especially for problems that do not admit an analytical 
solution. Many such problems do not satisfy optimality or existence and uniqueness conditions. 
In these cases the classical calculus of variations formulation falls short. Yet, these problems 
may possess an optimal solution which can be found by DP. Mathematical principles of the 
method can be found in Bellman (1957). A standard DP algorithm is presented in Kirk (1970).  

Iterative Dynamic Programming (IDP) is a recent evolution of the same idea. It applies the 
recurrence relation known as the Bellman equation in an iterative fashion, converging to the 
solution in each iteration. The IDP algorithm can be implemented with surprisingly few grid 
points, thus eliminating the most prominent weakness of the standard DP algorithm: as the 
number of dimensions grows the vast size of memory storage becomes prohibitive. In fact, the 
IDP version adopted in this paper uses only a single grid-point. The algorithm outlined below in 
10 steps, is adapted by Luus (2000): 
1. Discretize the time interval [0, ]ft  into N time stages of equal length t . t should be chosen to 

coincide with the forecast interval. If 
ft N t  , an additional time stage is required of length 

ft t N t    .  

2. Make an initial “guess” for the entire control sequence ( )    ( 1,..., )k k N u . In the iteration 

following the first, this will be the optimal control obtained in the previous iteration. Using ( )k
u  
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integrate (40)-(41) to generate an initial nominal trajectory ( )k
x , where 1,..., 1k N  . 

Alternatively, one can “guess” the nominal trajectory ( )k
x and compute the corresponding initial 

control history ( )k
u . 

3. Choose the number of controls rc  ( 1,2,..., )r m  for each element of the mx1 control vector u . 

The total number of controls is 1 2 ... mC c c c    . Choose the control region contraction factor  .  

4. Choose an increment u that determines the span of control region around the central value 


u , i.e. 

 

 j jR  u u  (59) 

 

The left superscript j  denotes iteration number. The quantity jR  is a scaling factor applied to 

u . It is responsible for narrowing the control region around j 
u  in every iteration. For the first 

iteration 1 1R  . 

5. Discretize each element r  of  u  into 
2

rc
 quantized values. These values are selected 

randomly in the range u . 

6. Start the iterations by setting 1,j    1jR  .  

7. Move two steps back from the terminal state to the beginning of stage 1N  . This corresponds 

to time 2ft t  . Integrate forward along the next stage, that is from time 2ft t   to time 
ft t , 

C  times using C  different values of u : 

 
 ( 1) ( 1)j jN N R    u u u  (60) 

 

If any of the elements of ( 1)N u  falls outside the allowable values for control, clip them at the 

upper or lower bound as appropriate. The integration starts from the known state ( 1)j N x  of 

the current optimal path. Calculate the reached state ( )  ( 1,2,..., )r N r Cx  and integrate along the 

final stage to close in on the (fixed) destination point (i.e. the terminal state). Calculate the 
associated performance index I  for each of the C  different controls for this two-leg route. Find 

the r  for which I  is minimized and store the corresponding ( 1)r N u  as 1 ( 1)j N  u .  

8. Move one step further back, to the beginning of stage 2N   (corresponding to time 3ft t  ). 

Starting from state ( 2)j N x  integrate one step forward, up to time 2ft t  , using C  different 

values of u : 

 
 ( 2) ( 2)j jN N R    u u u  (61) 

 

Calculate the reached state ( 1)r N x . For every r , carry out the integration of the remaining 

trajectory up to the terminal state. Use the optimal control 1 ( 1)j N  u  derived in the previous 

step to integrate. Calculate the performance index for this segment of the path (i.e. from time 

3ft t   to 
ft ). Among the C  different values, store the minimum I  and the corresponding 

control as 1 ( 2)j N  u .  

9. Repeat steps 7 and 8 until the initial state is reached (initial condition). Integrate forward 
along the complete path using all available combinations of control as before and determine the 
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best one for the initial stage, i.e. 1 (1)j 
u . This concludes the first iteration. A complete control 

sequence 1 ( )j k 
u , ( 1,2,..., )k N  and an optimal trajectory 1 ( ) j l 

x , 1,2,..., 1l N   are now 

available for the next iteration.  
10. Reduce the size of the control region by setting 1j jR R  . Increase the iteration index j  by 

1 and repeat the algorithm starting from step 6. 

The above algorithm assumes that the whole voyage duration ft
is covered by a wave/swell 

forecast. If the duration of the voyage exceeds the maximum forecast time, as is the case in the 
example below, the algorithm needs to be adapted to assume calm water conditions for the 
segment of the route beyond forecast coverage. In this case, the remaining part of the route will 
be the great circle arc to the destination point. Figure 12 shows the extent of forecast coverage 
along the nominal great circle route.  
 

 
FIGURE 12.  Forecast Grid Points Closest to the Great Circle Route. 

Assumptions 

The length of time stages, as defined in the algorithm above, is chosen to coincide with the 
forecast interval of 3 hours. Such a short-term description of a sea state allows much confidence 
in the stationarity assumption discussed earlier. The control policy (i.e. speed and course) is 
piecewise constant over this time step. No accelerations are taken into account. The transients 
associated with changing the control input (e.g. engine rpm) are very short relative to the 
problem’s time scale and are neglected. Other components of resistance (such as appendage 
drag, air resistance, trim or steering resistance) are not included in the analysis. These are 
either steady components which can be easily incorporated in the model or relatively small in 
magnitude. The effect of currents is also omitted, as discussed above.  

At each stage (time) and for every state (spatial location) the program calculates fuel 
consumption and checks for constraint violation. For that, it draws information from stored 
forecast data. In the particular example presented here, the global forecast uploaded on the 
FTP server of UoA on October 9, 2014 contains the relevant information. For the fraction of the 
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trip not covered by the forecast calm water is assumed. Ship response and added resistance 
data are obtained from SWAN1, via the constructed hydrodynamic database, for 10 different 
speeds (from 7 to 16 knots) and 5 different headings (from 0 to 180 degrees on either side). The 
actual data are stored in memory in the form of large matrices. Intermediate values are obtained 
by interpolation. The number of iterations is set to 20 and γ is chosen to be 0.7. The 
discretization of controls yields a total of C=50 combinations of speed and course (5 speed 
settings and 10 course settings are used in the optimization code).  

A longer trip, on the order of several weeks, can be handled by the IDP algorithm as well. In 
this case, more than one 168-hour forecasts are needed to cover the whole voyage duration. 
The algorithm is executed at the starting time using the available forecast at that time. The 
following day, as soon as the next forecast becomes available, the algorithm is executed again 
with different initial conditions. These are naturally the coordinates of the ship’s new position. 
The final time is also adjusted accordingly. Now the part of the total route not covered by a sea 
state prediction is shorter. The program is run daily using updated forecasts in a similar fashion 
until the destination is reached. This process may be executed very efficiently onboard the 
vessel. It can, in fact, be implemented in short duration voyages as well.  

RESULTS AND DISCUSSION 

A trans-oceanic passage would normally be planned along the great circle route. In calm 
seas this is the minimum fuel route, because it is the shortest one. Regardless, the rhumb line 
route is often considered by the navigator as a reasonable alternative, especially when the great 
circle routes pass closer to the poles and through more severe seas and/or navigational hazards 
(e.g. icebergs). Table 4 below presents a comparison of calculation results for the two routes in 
the numerical example worked out in this text. It can be seen that the loxodrome (rhumb line) is 
2.3% longer than the orthodrome (great circle) and about 2.5% more fuel-expensive in calm 
seas. In rough seas, on the other hand, computation of fuel consumption when sailing the great 
circle route shows a 45.5% increase in fuel cost compared to the respective calm seas quantity. 
For the rhumb line route the increase of fuel cost in waves is 14%.  

 
TABLE 4.  Great Circle vs. Rhumb Line Routes. 

Description Unit Value 

Great Circle  (GC) Distance naut.miles 3138.6 

Rhumb Line (RL) Distance naut.miles 3210.5 

Nominal Voyage Time days 10.06 

Calm Water Speed (GC) knots 13.0 

Calm Water Speed (RL) knots 13.3 

Calm Water Fuel Cost (GC) tonne 66.89 

Calm Water Fuel Cost (RL) tonne 68.59 

Predicted Fuel Cost (GC) tonne 97.31 

Predicted Fuel Cost (RL) tonne 78.24 

 
Figures 13 to 16 show the fraction of each trajectory in which some safety constraint is 

violated. In the middle part of the great circle route the WAM forecast predicts wind waves and 
swell with significant height locally in excess of 9m and 4m respectively. For the rhumb line the 
predicted figures are about 3.5m and 3m respectively. In both routes the ship encounters these 
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sea states from head and bow directions. The rhumb line route violates only the deck wetness 
limiting probability of occurrence. 

 
FIGURE 13.  Violation of Deck Wetness Constraint along the Orthodrome. 

 

FIGURE 14.  Violation of Slamming Constraint along the Orthodrome. 
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FIGURE 15.  Violation of Engine Overload Constraint along the Orthodrome. 

 

 

FIGURE 16.  Violation of Deck Wetness Constraint along the Loxodrome. 
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FIGURE 17.  Evolution of Wind and Swell Wave System as Forecasted between 105h and 120h of 

Voyage Time. 

The algorithm described in the previous section is coded in MATLAB® to generate the fuel 
minimizing route. First, the code is executed without any constraint considerations. The 
orthodrome enters the computations as the nominal route (initial guess). The output is depicted 
in figure 18. The computed optimal route, after 25 iterations, saves 19.8% more bunker fuel than 
the nominal great circle but only marginally less than the rhumb line (around 0.3%). However, 
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this route exceeds the specified threshold for deck wetness probability in the portion designated 
by ‘x’ marks. This would normally be an infeasible route in the constrained counterpart of the 
optimization problem, hence it would be ruled out during the code execution. To verify this, the 
optimization code is run again checking for constraint violation this time. The result is graphically 
reproduced in figure 19. The optimal control histories for ship’s course and speed settings are 
shown in figures 20 and 21 respectively. Evidently, the optimal route turns sharply towards the 
north while slowing down at the same time, in order to avoid the high head/bow seas around the 
middle segment of the trajectory. Then it turns back towards the previous track. After the 
expiration of the available forecast the gap to the destination point is bridged with a great circle 
arc.  

 

FIGURE 18.  Optimal Route of the Unconstrained Minimum Fuel Problem. 

 
FIGURE 19.  Optimal Route of the Constrained Minimum Fuel Problem. 
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FIGURE 20.  Optimal Control History for Ship’s Heading. 

 

 

 
FIGURE 21.  Optimal Control History for Ship’s Speed. 

 
The structure of the computed optimal solution is intuitive, if one observes the sea state 

evolution in the mid Atlantic during the voyage of interest (figure 17), bearing in mind that the 
ship’s freeboard is only 2.85m. In this numerical experiment the behavior of the optimal solution 
is explored under the influence of longitudinal motion-related constraints only. As a result, 
turning the ship’s bow away from the waves both reduces added resistance and alleviates 
heaving and pitching motions. 

 

Convergence, Accuracy and Sensitivity 

Speed of convergence and accuracy are both dominated by the control space C and the 
contraction factor γ, as defined above in the IDP algorithm. Convergence is illustrated in figure 
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22 for the constrained optimization problem. To expedite convergence, the optimal solution 
computed before for the unconstrained problem was used as the initial route in the algorithm. A 
discussion about tuning the IDP parameters (C, γ, number of iterations) can be found in 

Avgouleas (2008). The particular optimization scheme with the IDP settings mentioned above 
was found to be the best compromise between speed of execution and accuracy of the solution.  

 

 
FIGURE 22.  Convergence to the Optimal Solution with γ=0.7. 

 
To assess the sensitivity of the solution to the imposed safety constraints several trials were 

conducted relaxing or lifting one constraint at a time and then both simultaneously. It is 
concluded that relaxing the slamming constraint has no effect on the optimal solution. Deck 
wetness, in contrast, is dominant. In all cases, violation of the slamming constraint occurred 
together with violation of the deck wetness constraint, but the converse was not true. Altering 
the limiting value for the probability of occurrence of this event (i.e. green water on deck) 
changes the structure of the solution significantly. This suggests that the type and limiting values 
of the constraints must be selected carefully and consistently with the risks that particular 
vessels and their cargoes encounter in severe sea states. The observed redundancy of the 
slamming constraint could justify enforcement of a different restriction, such as rolling angle or 
acceleration. Some caution should be exercised regarding the accuracy of computation of ship 
motions, if they are to be incorporated as constraints in the program. For example, prescribing a 
rolling angle (RMS) restriction implies computation of rolling RAOs. If these computations are 
performed on the basis of ideal flow principles the results may not be realistic, as roll is primarily 
a viscous phenomenon. 

Fuel Savings 

There is no simple way to unambiguously quantify the savings in fuel cost in this constrained 
optimization simulation. The lack of knowledge, in advance, of the navigation track the captain 
would follow to avoid rough seas makes it difficult to directly compare it to the optimal solution 
and evaluate its beneficial effect. An estimate may however be obtained by examining feasible 
routes that satisfy the constraints and comparing them to the optimal.  

Any route which brings the ship from the point of departure to the destination point without 
violating the imposed constraints as well as the voyage final time belongs to the set of feasible 
routes. The one yielding the lowest value of the assigned performance index (fuel cost, in 
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particular) is the optimal route. Given the difference in the forecasted severity of the sea 
between loxodrome and orthodrome, as discussed earlier in this section, existence of a 
plausible track was investigated to the south of the rhumb line route. This baseline-feasible, sub-
optimal route (figure 23) satisfies the prescribed constraints. It was determined by trial and error. 
Calculation yields a fuel cost of 85.93 tonne for this route. The optimal route of figure 19 
requires 5.7% less bunker fuel than the baseline feasible one. Table 5 summarizes the 
calculated savings. Although the calculated saving rates are heavily dependent on the predicted 
sea states of the particular example, the benefit of utilizing a decision support system for route 
selection over sheer intuition or mariner’s experience is indisputable.  

 

 
FIGURE. 23.  A Baseline Feasible Route South οf the Loxodrome. 

 
 

TABLE 5.  Summary of Fuel Savings. 

Description Value 

Fuel Cost of Baseline Feasible Route (tonne) 85.93 

Fuel Cost of Nominal Route (tonne) 97.31 

Fuel Cost of Optimal Route (tonne) 81.06 

Fuel Savings Relative to Nominal (%) 16.7 

Fuel Savings Relative to Baseline Feasible (%) 5.7 

 

CONCLUSIONS 

Fuel-efficient navigation is explored and a solution to the minimum cost routing problem is 
proposed. An understanding of the governing physics of the problem in question has been 
emphasized. The dynamics of ship motions and sea state evolution is best captured by state-of-
the-art tools like SWAN1 and WAM4. Particular attention should be paid to the added resistance 
in waves, as it is a driving factor in the vessel routing problem. A comprehensive model for the 
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optimal control of a ship in waves is developed and a solution has been shown to exist and has 
been generated using Dynamic Programming. This technique proves to be particularly 
appealing as it circumvents problematic questions of existence and uniqueness of solution, 
optimality conditions, existence of derivatives and gradients, all basic requirements of the 
classical calculus of variations. Furthermore, it is ideally suitable for fast, real time 
implementation onboard the vessel. Iterative Dynamic Programming, an intelligent alternative to 
the standard DP algorithm, is found to produce fast results with reasonable accuracy. The main 
advantage of this alternative, pointed out by Luus (2000) who introduced it, lies in its robustness 
in obtaining the global optimum. Although there is always a possibility of obtaining a local 
optimum, careful selection of the IDP parameters usually eliminates this risk and it is proven to 
give remarkable results in challenging problems, compared to existing well-established methods 
such as sequential quadratic programming and others. The structure of the optimal solution is 
strongly affected by the enforced constraints. The findings reveal a great potential in the 
application of optimal routing methods in shipping. The example-ship used in this paper is a 
small cargo liner. The magnitude of the derived savings projects to a notable reduction of 
bunker fuel expenses, especially for tankers, bulk carriers and containerships.  

Accurate weather forecasts need to be the subject of a continuous research effort for the 
results of the present fuel efficient routing algorithm to be significant and useful. The current 
formulation carries out the optimization of the expected value of the cost function conditioned on 
a given weather forecast known deterministically. Current weather forecasting technologies 
allow for the accurate prediction of the expected sea states days in advance. This enables the 
direct implementation of the optimal ship routing method developed in the present article for the 
reduction of fuel consumption for trips of the order of weeks by breaking the sailing time into 
sub-intervals over which the weather forecast is known with a high degree of certainty. 

The shipping industry consumes approximately 4 million barrels of oil daily. Assuming that 
cargo vessels sail into severe sea states approximately 25% of their sailing time, the 
implementation of the fuel efficient routing algorithm developed in the present study, even using 
a modest 5% fuel saving rate, would result approximately into a daily reduction of fuel 
consumption of approximately 50,000 barrels of oil (=0.25x0.05x4,000,000). Other than the cost 
savings by the shipping industry this reduction of crude oil consumption results in a reduction of 
emissions of CO2 and other greenhouse gases into the atmosphere. The combined liquid fuels 
obtained from the refining of an average barrel of oil will produce a minimum of 317kg of CO2 
when consumed. Therefore a reduction of fuel consumption by the shipping industry of 50,000 
barrels of oil daily would result in a reduction of 15,850 tonnes of CO2 emissions. These figures 
may climb higher under conditions that result in greater fuel savings rates such as the 26% 
estimated by Tsujimoto and Tanizawa (2006), or the 22.1% estimated by Mezaoui et al. (2009) 
etc.  

The optimal routing methods developed in the present study are readily applicable to the 
optimal sailing of yachts at the America’s Cup level and in open ocean racing.  The cost function 
that must be minimized when sailing a yacht is the time to destination. Weather uncertainty 
arises from the wind and wave forecasts and accurate forecasts are currently available a day or 
more in advance. The resistance of sailing yachts in calm water and in a sea state is analogous 
to that of ships, augmented by the induced drag caused by the wake of the keel, winglets, 
rudder and sails. The “propulsion” of a sailing yacht arises from the lift force exerted by the wind 
on the sails. The controls to be optimally selected by the dynamic programming algorithm are 
the settings of the rudder and trim tabs and the trimming of the sails. Given the advanced state 
of development of the hydrodynamic and aerodynamic performance attributes of hull forms, 
appendages and sails the introduction of optimal navigation strategies based on real time 
dynamic programming methods stands to offer a significant edge in competitive yacht sailing. 
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A Look Ahead 

The model presented in this paper belongs to the broader category of white-box models, 
namely models fully transparent in the incorporation of the governing physics to the best 
possible extent. On the other extreme, black-box models exist that are oblivious of the 
governing physics but rely on real time on-board measurements of relevant parameters to 
derive the quantities of interest using system identification techniques. The abundance of 
existing literature makes use of either approach, or combination of both (the so-called “grey-box” 
models) and claims fuel savings ranging from 2% to over 25%. The savings anticipated by 
deterministic optimal routing models are unlikely to materialize with the degree of confidence 
expected by ship owners and operators. The cornerstone of weather routing is wave 
forecasting. As already mentioned above, the state of the art in wave modeling and forecasting 
is deterministic, yet the nature of predicting the future sea state is by definition stochastic. 
Furthermore, variation of a range of parameters would lead to poor prediction of fuel 
consumption even under the hypothesis of perfect knowledge of future weather. Just to name a 
few, such parameters could be hull/propeller fouling, engine performance degradation, propeller 
performance in waves, loading condition, water density, presence of unpredicted currents, 
bunker fuel heating value and so on. A stochastic optimal weather routing formulation would 
seek to determine the optimal control strategy which remains optimal under all state variables 
and uncertainties associated with the problem. This task is challenging in multi-dimensional and 
stochastic settings and is being addressed as outlined below. 

Recent advances in control theory allow the explicit solution of the multi-dimensional 
stochastic optimal control problem by casting the ship evolution equations in matrix state-
space form. In the context of fuel-efficient ship routing the states include: the ship fuel 
consumption, the propeller RPM, the vessel coordinates relative to an earth-fixed frame, the 
vessel horizontal velocities, the vessel yaw angle, the vessel yaw rate, the rudder angle, the 
rudder angular velocity and the parameters discussed in the preceding paragraph. Casting the 
coupled resistance, maneuvering and seakeeping problems in a multi-dimensional state-space 
form and allowing for the weather forecasts to be known only stochastically leads to an 
analytical and efficient determination of the ship route with the minimum fuel consumption 
using the methods described in Yong and Zhou (1999). The generality and efficiency of this 
optimal control algorithm would allow its real-time implementation on a ship using a desktop 
PC. Its implementation to the fuel-efficient ship routing problem is very promising and is the 
subject of ongoing research. 
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