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Abstract.  The concept of electromotive force (emf) may be introduced in various ways in 
an undergraduate course of theoretical electromagnetism. The multitude of alternate 
expressions for the emf is often the source of confusion to the student. We summarize the 
main ideas, adopting a pedagogical logic that proceeds from the general to the specific. 
The emf of a “circuit” is first defined in the most general terms. The expressions for the 
emf of some familiar electrodynamical systems are then derived in a rather straightforward 
manner. A diversity of physical situations is thus unified within a common theoretical 
framework.  

1.  INTRODUCTION 

The difficulty in writing this article was not just due to the subject itself: we had to first 
overcome some almost irreconcilable differences in educational philosophy between an 
(opinionated) theoretical physicist and an (equally -if not more- opinionated) electrical engineer. 
At long last, a compromise was reached! This paper is the fruit of this “mutual understanding”.  

Having taught intermediate-level electrodynamics courses for several years, we have come 
to realize that, in the minds of many of our students, the concept of electromotive force (emf ) is 
something of a mystery. What is an emf, after all? Is it the voltage of an ideal battery in a DC 
circuit? Is it work per unit charge? Or is it, in a more sophisticated way, the line integral of the 
electric field along a closed path? And what if a magnetic rather than an electric field is present?  

Generally speaking, the problem with the emf lies in the diversity of situations where this 
concept applies, leading to a multitude of corresponding expressions for the emf. The subject is 
discussed in detail, of course, in all standard textbooks on electromagnetism, both at the 
intermediate [1-9] and at the advanced [10-12] level. Here we summarize the main ideas, 
choosing a pedagogical approach that proceeds from the general to the specific. We begin by 
defining the concept of emf of a “circuit” in the most general way possible. We then apply this 
definition to certain electrodynamic systems in order to recover familiar expressions for the emf. 
The main advantage of this approach is that a number of different physical situations are treated 
in a unified way within a common theoretical framework.  

The general definition of the emf is given in Section 2. In subsequent sections (Sec.3-5) 
application is made to particular cases, such as motional emf, the emf due to a time-varying 
magnetic field, and the emf of a DC circuit consisting of an ideal battery and a resistor. In Sec.6, 
the connection between the emf and Ohm’s law is discussed.  
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2.  THE GENERAL DEFINITION OF EMF 

Consider a region of space in which an electromagnetic (e/m) field exists. In the most general 
sense, any closed path C (or loop) within this region will be called a “circuit” (whether or not the 
whole or parts of C consist of material objects such as wires, resistors, capacitors, batteries, or 
any other elements whose presence may contribute to the e/m field).  

We arbitrarily assign a positive direction of traversing the loop C, and we consider an element 

dl
���

 of C oriented in the positive direction. Imagine now a test charge q located at the position of 

dl
���

, and let F
�

 be the force on q at time t :  

 

                                               

dl
���

•

C

+

q

F
�

      
 
This force is exerted by the e/m field itself, as well as, possibly, by additional energy sources 

(e.g., batteries) that can interact electrically with q. The force per unit charge at the position of 

dl
���

 at time t, is  

 

                   
F

f
q

=

�
�

                                                                (1) 

 

Note that f
�

 is independent of q, since the force by the e/m field and/or the sources on q is 

proportional to the charge. In particular, reversing the sign of q will have no effect on f
�

 

(although it will change the direction of F
�

).  
      We now define the electromotive force (emf ) of the circuit C at time t as the line integral 

of f
�

 along C, taken in the positive sense of C :  

 

                            E
C

f dl= ⋅∫
����

�                                                             (2) 

 
Note that the sign of the emf is dependent upon our choice of the positive direction of 

circulation of C: by changing this convention, the sign of E is reversed.  

We remark that, in the non-relativistic limit, the emf of a circuit C is the same for all inertial 

observers since at this limit the force F
�

 is invariant under a change of frame of reference.  
In the following sections we apply the defining equation (2) to a number of specific 

electrodynamic situations that are certainly familiar to the student.  
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3.  MOTIONAL EMF IN THE PRESENCE OF A STATIC MAGNETIC 
FIELD 

Consider a circuit consisting of a closed wire C. The wire is moving inside a static magnetic 

field ( )B r
� �

. Let υ
�

 be the velocity of the element dl
���

 of C relative to our inertial frame of 

reference. A charge q (say, a free electron) at the location of dl
���

 executes a composite motion, 

due to the motion of the loop C itself relative to our frame, as well as the motion of q along C. 

The total velocity of q relative to us is totυ υ υ′= +
� � �

, where υ′
�

 is the velocity of q in a direction 

parallel to dl
���

. The force from the magnetic field on q is  

 

                               

( ) ( ) ( )

( ) ( )

totF q B q B q B

F
f B B

q

υ υ υ

υ υ

′= × = × + × ⇒

′= = × + ×

� � � �� � �

�
� � �� �            

 
By (2), then, the emf of the circuit C is  
 

                           E ( ) ( )
C C C

f dl B dl B dlυ υ ′= ⋅ = × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� �

� � �      

 

But, since υ′
�

 is parallel to dl
���

, we have that ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

           E ( )
C

B dlυ= × ⋅∫
�����

�                                                         (3) 

 
Note that the wire need not maintain a fixed shape, size or orientation during its motion! Note 

also that the velocity υ
�

 may vary around the circuit.  
      By using (3), it can be proven (see Appendix) that  
 

      E 
d

dt

Φ
= −                                                                 (4) 

 

where B daΦ= ⋅∫
����

 is the magnetic flux through the wire C at time t. Note carefully that (4) 

does not express any novel physical law: it is simply a direct consequence of the definition of 
the emf !  

4.  EMF DUE TO A TIME-VARYING MAGNETIC FIELD 

Consider now a closed wire C that is at rest inside a time-varying magnetic field ( , )B r t
� �

. As 

experiments show, as soon as B
�

 starts changing, a current begins to flow in the wire. This 
looks impressive, given that the free charges in the (stationary) wire were initially at rest. And, 
as everybody knows, a magnetic field exerts forces on moving charges only! It is also observed 

experimentally that, if the magnetic field B
�

 stops varying in time, the current in the wire 
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disappears. The only field that can put an initially stationary charge in motion and keep this 
charge moving is an electric field.  

      We are thus compelled to conclude that a time-varying magnetic field is necessarily 
accompanied by an electric field. (It is often said that “a changing magnetic field induces an 
electric field”. This is somewhat misleading since it gives the impression that the “source” of an 
electric field could be a magnetic field. Let us keep in mind, however, that the true sources of 
any e/m field are the electric charges and the electric currents!)  

      So, let ( , )E r t
� �

 be the electric field accompanying the time-varying magnetic field B
�

. 

Consider again a charge q at the position of the element dl
���

 of the wire. Given that the wire is 

now at rest (relative to our inertial frame), the velocity of q will be due to the motion of the 

charge along the wire only, i.e., in a direction parallel to dl
���

: totυ υ′=
� �

 (since 0υ =
�

). The force on 

q by the e/m field is  
 

                             

[ ( )] [ ( )]

( )

totF q E B q E B

F
f E B

q

υ υ

υ

′= + × = + × ⇒

′= = + ×

� � � � �� �

�
� � ��       

 
The emf of the circuit C is now  
 

                              E ( )
C C C

f dl E dl B dlυ ′= ⋅ = ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � ��

� � �        

 

But, as explained earlier, ( ) 0B dlυ ′ × ⋅ =
�����

. Thus, finally,  

 

         E 
C

dlΕ= ⋅∫
����

�                                                                (5) 

 
      Equation (4) is still valid. This time, however, it is not merely a mathematical 

consequence of the definition of the emf ; rather, it is a true physical law deduced from 
experiment! Let us examine it in some detail.  

      In a region of space where a time-varying e/m field ( , )E B
� �

 exists, consider an arbitrary 

open surface S bounded by the closed curve C :  
 

                                                               

S

C

da
���

da

dl
���

     
 

(The relative direction of dl
���

 and the surface element da
���

, normal to S, is determined 

according to the familiar right-hand rule.) The loop C is assumed stationary relative to the inertial 
observer; hence the emf along C at time t is given by (5). The magnetic flux through S at this 
instant is  
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                                                  ( )m
S

t B daΦ = ⋅∫
����

        

 

(Note that the signs of E and Φm depend on the chosen positive direction of C.) Since the field 

B
�

 is solenoidal, the value of Φm for a given C is independent of the choice of the surface S. 
That is, the same magnetic flux will go through any open surface bounded by the closed curve 
C.  

      According to the Faraday-Henry law,  
 

               E m
d

dt

Φ
= −                                                                        (6) 

or explicitly,  
 

  
C S

d
E dl B da

d t
⋅ = − ⋅∫ ∫
��� ���� �

�                                                           (7) 

 
(The negative sign on the right-hand sides of (6) and (7) expresses Lenz’s law.)  
      Equation (7) can be re-expressed in differential form by using Stokes’ theorem,  
 

                                           ( )
C S

E dl E da⋅ = ∇× ⋅∫ ∫
��� ���� � �

�             

 
and by taking into account that the surface S may be arbitrarily chosen. The result is  
 

B
E

t

∂
∇× = −

∂

�
� �

                                                                (8) 

 

We note that if / 0B t∂ ∂ ≠
�

, then necessarily 0E ≠
�

. Hence, as already mentioned, a time-

varying magnetic field is always accompanied by an electric field. If, however, B
�

 is static (

/ 0B t∂ ∂ =
�

), then E
�

 is irrotational: 0 0E E dl∇× = ⇔ ⋅ =∫
���� � �

� , which allows for the possibility 

that 0E =
�

.  

      Corollary:  The emf around a fixed loop C inside a static e/m field ( )( ) , ( )E r B r
� �� �

 is  E = 0  

(the student should explain this).  

5.  EMF OF A CIRCUIT CONTAINING A BATTERY AND A RESISTOR 

Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance) 
connected to an external resistor. As shown below, the emf of the circuit in the direction of the 
current is equal to the voltage V of the battery. Moreover, the emf in this case represents the 
work per unit charge done by the source (battery).  
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i i+_
a b

I

I

0
f
�

E
�

                 
 
      We recall that, in general, the emf of a circuit C at time t is equal to the integral  
 

                                                      E 
C

f dl= ⋅∫
����

�                        

 

where /f F q=
� �

 is the force per unit charge at the location of the element dl
���

 of the circuit, at 

time t. In essence, we assume that in every element dl
���

 we have placed a test charge q (this 

could be, e.g., a free electron of the conducting part of the circuit). The force F
�

 on each q is 
then measured simultaneously for all charges at time t. Since here we are dealing with a static 
(time-independent) situation, however, we can treat the problem somewhat differently: The 

measurements of the forces F
�

 on the charges q need not be made at the same instant, given 
that nothing changes with time, anyway. So, instead of placing several charges q around the 

circuit and measuring the forces F
�

 on each of them at a particular instant, we imagine a single 
charge q making a complete tour around the loop C. We may assume, e.g., that the charge q is 
one of the (conventionally positive) free electrons taking part in the constant current Ι flowing in 

the circuit. We then measure the force F
�

 on q at each point of C.  
      We thus assume that q is a positive charge moving in the direction of the current Ι. We 

also assume that the direction of circulation of C is the same as the direction of the current 

(counterclockwise in the figure). During its motion, q is subject to two forces: (1) the force 
0

F
�

 by 

the source (battery) that carries q from the negative pole a to the positive pole b through the 

source, and (2) the electrostatic force 
eF q E=
� �

 due to the electrostatic field E
�

 at each point of 

the circuit C (both inside and outside the source). The total force on q is  
    

                        
0

0 0 0e

F F
F F F F qE f E f E

q q
= + = + ⇒ = = + ≡ +

� �
� �� � � � � � �

      

Then,  
 

   E 
0 0

C C C C
f dl f dl E dl f dl= ⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫
��� ��� ��� ���� � ��

� � � �                                    (9) 

 

since 0
C

E dl⋅ =∫
����

�  for an electrostatic field. However, the action of the source on q is limited to 

the region between the poles of the battery, that is, the section of the circuit from a to b. Hence, 

0
0f =

�
 outside the source, so that (9) reduces to  

 

  E
0

b

a
f dl= ⋅∫
����

                                                               (10) 
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Now, since the current Ι is constant, the charge q moves at constant speed along the circuit. 
This means that the total force on q in the direction of the path C is zero. In the interior of the 

resistor, the electrostatic force 
eF q E=
� �

 is counterbalanced by the force on q due to the 

collisions of the charge with the positive ions of the metal (this latter force does not contribute to 
the emf and is not counted in its evaluation!). In the interior of the (ideal) battery, however, 

where there is no resistance, the electrostatic force 
eF
�

 must be counterbalanced by the 

opposing force 
0

F
�

 exerted by the source. Thus, in the section of the circuit between a and b,  

 

                     0 0 0
0 0

e

F
F F F f f E f E

q
= + = ⇒ = = + = ⇒ = −

�
� � �� � � � �

         

 
Equation (10) then takes the final form,  
 

  E
b

b a
a

E dl V V V= − ⋅ = − =∫
����

                                                     (11) 

 
where Va and Vb are the electrostatic potentials at a and b, respectively. This is, of course, 

what every student knows from elementary e/m courses!  
      The work done by the source on q upon transferring the charge from a to b is  
 

       
0 0

b b

a a
W F dl q f dl q= ⋅ = ⋅ =∫ ∫

��� �����
E                                                (12) 

 

[where we have used (10)]. So, the work of the source per unit charge is W/q= E . This work is 

converted into heat in the resistor, so that the source must again supply energy in order to carry 
the charges once more from a to b. This is something like the torture of Sisyphus in Greek 
mythology!  

6.  EMF AND OHM’S LAW 

Consider a closed wire C inside an e/m field. The circuit may contain sources (e.g., a battery) 
and may also be in motion relative to our inertial frame of reference. Let q be a test charge at 

the location of the element dl
���

 of C, and let F
�

 be the total force on q (due to the e/m field 

and/or the sources) at time t. (As mentioned in Sec.2, this force is, classically, a frame-

independent quantity.) The force per unit charge at the location of dl
���

 at time t, then, is 

/f F q=
� �

. According to our general definition, the emf of the circuit at time t is  

 

         E
C

f dl= ⋅∫
����

�                                                       (13) 

 
Now, if σ is the conductivity of the wire, then, by Ohm’s law in its general form (see, e.g., p. 

285 of [1]) we have:  
 

            J fσ=
��

                                                           (14) 
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where J
�

 is the volume current density at the location of dl
���

 at time t. (Note that the more 

common expression J Eσ=
� �

, found in most textbooks, is a special case of the above formula. 

Note also that J
�

 is measured relative to the wire, thus is the same for all inertial observers.) By 
combining (13) and (14) we get:  

 

          E
1

C
J dl

σ
= ⋅∫

����

�                                                     (15) 

 

Taking into account that J
�

 is in the direction of dl
���

 at each point of C, we write:  

 

                                               
I

J dl J dl dl
S

⋅ = =
����

     

 
where S is the constant cross-sectional area of the wire. If we make the additional assumption 
that, at each instant t, the current I is constant around the circuit (although I may vary with time), 
we finally get:  

 

          E 
l l

I I I R
S S

ρ
σ

= = =                                                 (16) 

 
where l is the total length of the wire,  ρ=1/σ  is the resistivity of the material, and R is the total 

resistance of the circuit. Equation (16) is the familiar special form of Ohm’s law.  
      As an example, let us return to the circuit of Sec.5, this time assuming a non-ideal battery 

with internal resistance r. Let R0 be the external resistance connected to the battery. The total 
resistance of the circuit is R=R0+r. As before, we call V=Vb –Va the potential difference between 
the terminals of the battery, which is equal to the voltage across the external resistor. Hence, 
V=IR0 , where I is the current in the circuit. The emf of the circuit (in the direction of the current) 
is  

 

                                          E = I R = I (R0 + r) = V + I r    

 
Note that the potential difference V  between the terminals a and b equals the emf only when 

no current is flowing (I= 0) .  
      As another example, consider a circuit C containing an ideal battery of voltage V and 

having total resistance R and total inductance L :  

                                 

V

R
L

I
 

 
In this case, the emf of C in the direction of the current flow is  
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                                    E (t) ( )L

dI
V V V L I t R

dt
= + = − =            

 
To understand why the total emf of the circuit is V +VL , we think as follows: On its tour around 

the circuit, a test charge q is subject to two forces (ignoring collisions with the positive ions in the 
interior of the wire): a force inside the source, and a force by the non-conservative electric field 
accompanying the time-varying magnetic flux through the circuit. Hence, the total emf will be the 
sum of the emf due to the (ideal) battery alone and the emf expressed by the Faraday-Henry 
law (6). The latter emf is precisely VL ; it has a nonzero value for as long as the current I is 
changing.  

Some interesting energy considerations are here in order. The total power supplied to the 
circuit by the battery at time t is  

 

                                         
2 d I

P I V I R L I
dt

= = +                                  

 
The term  I

 2R  represents the power irreversibly lost as heat in the resistor (energy, per unit 
time, spent in moving the electrons through the crystal lattice of the conductor and transferred to 
the ions that make up the lattice). Thus, this power must necessarily be supplied back by the 
source in order to maintain the current against dissipative losses in the resistor. On the other 
hand, the term  LI (dI/dt)  represents the energy per unit time required to build up the current 
against the “back emf ” VL . This energy is retrievable and is given back to the source when the 
current decreases. It may also be interpreted as energy per unit time required in order to 
establish the magnetic field associated with the current. This energy is “stored” in the magnetic 
field surrounding the circuit.  

7.  CONCLUDING REMARKS 

In concluding this article, let us highlight a few points of importance:  
1. The emf was defined as a line integral of force per unit charge around a loop (or “circuit”) 

in an e/m field. The loop may or may not consist of a real conducting wire, and it may contain 
sources such as batteries.  

2. In the classical (non-relativistic) limit, the emf is independent of the inertial frame of 
reference with respect to which it is measured.  

3. In the case of purely motional emf, Faraday’s “law” (4) is in essence a mere consequence 
of the definition of the emf. On the contrary, when a time-dependent magnetic field is present, 
the similar-looking equation (6) is a true physical law (the Faraday-Henry law).  

4. In a DC circuit with a battery, the emf in the direction of the current equals the voltage of 
the battery and represents work per unit charge done by the source.  

5. If the loop describing the circuit represents a conducting wire of finite resistance, Ohm’s 
law can be expressed in terms of the emf by equation (16).  
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APPENDIX 

Here is an analytical proof of equation (4) of Sec.3:  
Assume that, at time t, the wire describes a closed curve C that is the boundary of a plane 

surface S. At time t΄= t+dt, the wire (which has moved in the meanwhile) describes another 

curve C΄ that encloses a surface S΄. Let d l
���

 be an element of C in the direction of circulation of 

the curve, and let υ
�

 be the velocity of this element relative to an inertial observer (the velocity 
of the elements of C may vary along the curve):  

                        

υ
�

dl
��� dl

���

S

S′

S′′ S′′da
���

da′
����

da′′
����

da′′
����

dtυ
�

C

C′ C′

C
      

The direction of the surface elements da
���

 and da′
����

 is consistent with the chosen direction of 

d l
���

, according to the right-hand rule. The element of the side (“cylindrical”) surface S΄΄ formed 

by the motion of C, is equal to  
 

                                       ( ) ( )da d l d t d l d tυ υ′′ = × = ×
���� ��� ���� �

     

 
Since the magnetic field is static, we can view the situation in a somewhat different way: 

Rather than assuming that the curve C moves within the time interval dt so that its points 
coincide with the points of the curve C΄ at time t΄, we consider two constant curves C and C΄ at 

the same instant t. In the case of a static field B
�

, the magnetic flux through C΄ at time t΄= t+dt 
(according to our original assumption of a moving curve) is the same as the flux through this 
same curve at time t, given that no change of the magnetic field occurs within the time interval 

dt. Now, we note that the open surfaces S1=S and S2= S΄ ∪ S΄΄ share a common boundary, 
namely, the curve C. Since the magnetic field is solenoidal, the same magnetic flux Φm passes 
through S1 and S2 at time t. That is,  

 

                  
1 2

1 2
S S S S΄ S΄΄

B da B da B da B da B da′ ′′⋅ = ⋅ ⇒ ⋅ = ⋅ + ⋅∫ ∫ ∫ ∫ ∫
���� ���� ��� ���� ����� � � � �

       

 
But, returning to our initial assumption of a moving curve, we note that  
 

        ( )m
S
B da tΦ⋅ = =∫
����

magnetic flux through the wire at time t    

 
and  
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   ( )m
S΄

B da t dtΦ′⋅ = + =∫
�����

 magnetic flux through the wire at time t+dt    

 
Hence,  
 

            

( ) ( )

( ) ( ) ( )

( ) ( )

m m
S΄΄

m m m
S΄΄ C

m

C C

t t dt B da

d t dt t B da dt B dl

d
B dl B dl

dt

Φ Φ

Φ Φ Φ υ

Φ
υ υ

′′= + + ⋅ ⇒

′′= + − = − ⋅ = − ⋅ × ⇒

− = ⋅ × = × ⋅ =

∫

∫ ∫

∫ ∫

�����

���� ���� � �

��� ���� �� �

�

� � E

 

 
in accordance with (3) and (4).  
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